

Continuum Relational Physics in Group Field Theories and Applications to Cosmology

Luca Marchetti

Quantum Gravity Group Seminars Perimeter Institute, Waterloo 14 December 2023

Department of Mathematics and Statistics UNB Fredericton Microscopic description Background independent, pre-geometric Macroscopic description Geometries and spacetime-based quantities Continuum limit problem

Microscopic description Background independent, pre-geometric Macroscopic description Geometries and spacetime-based quantities Continuum limit problem

Microscopic description Background independent, pre-geometric Macroscopic description Geometries and spacetime-based quantities

Localization problem

Microscopic description Background independent, pre-geometric Macroscopic description Geometries and spacetime-based quantities

Relationality

Microscopic description Group Field Theory Macroscopic description Cosmology

Localization (relationality)

Microscopic description Group Field Theory

> Localization (relationality)

Introduction to GFTs

Group Field Theories: theories of a field $\varphi : G^r \to \mathbb{C}$ defined on r copies of a group manifold G. r is the dimension of the "spacetime to be" (r = 4) and G is the local gauge group of gravity, $G = SL(2, \mathbb{C})$ or, for some models, G = SU(2).

Oriti 1110.5606; Reisenberger, Rovelli 0002083; Freidel 0505016; Baratin, Oriti 1002.4723; Finocchiaro, Oriti 1812.03550.

Definitio

Action

Group Field Theories: theories of a field $\varphi : G^r \to \mathbb{C}$ defined on r copies of a group manifold G. r is the dimension of the "spacetime to be" (r = 4) and G is the local gauge group of gravity, $G = SL(2, \mathbb{C})$ or, for some models, G = SU(2).

$$\mathcal{S}[arphi,ar{arphi}] = \int \mathrm{d}g_{s}ar{arphi}(g_{s})\mathcal{K}[arphi](g_{s}) + \sum_{\gamma}rac{\lambda_{\gamma}}{n_{\gamma}} \, \mathsf{Tr}_{\mathcal{V}\gamma}[arphi] + \mathsf{c.c.} \; .$$

- Interaction terms are combinatorially non-local.
- Field arguments convoluted pairwise following the combinatorial pattern dictated by the graph γ:

$$\mathsf{Tr}_{\mathcal{V}_{\gamma}}[\varphi] = \int \prod_{i=1}^{n_{\gamma}} \mathrm{d}g_{a} \prod_{(a,i;b,j)} \mathcal{V}_{\gamma}(g_{a}^{(i)}, g_{b}^{(j)}) \prod_{i=1}^{n_{\gamma}} \varphi(g_{a}^{(i)})$$

Oriti 1110.5606; Reisenberger, Rovelli 0002083; Freidel 0505016; Baratin, Oriti 1002.4723; Finocchiaro, Oriti 1812.03550.

Group Field Theories: theories of a field $\varphi : G^r \to \mathbb{C}$ defined on r copies of a group manifold G. r is the dimension of the "spacetime to be" (r = 4) and G is the local gauge group of gravity, $G = SL(2, \mathbb{C})$ or, for some models, G = SU(2).

$$S[arphi,ar{arphi}] = \int \mathrm{d}g_{a}ar{arphi}(g_{a})\mathcal{K}[arphi](g_{a}) + \sum_{\gamma}rac{\lambda_{\gamma}}{n_{\gamma}}\operatorname{Tr}_{\mathcal{V}\gamma}[arphi] + \mathrm{c.c.}$$

- Interaction terms are combinatorially non-local.
- Field arguments convoluted pairwise following the combinatorial pattern dictated by the graph γ:

$$\mathsf{Tr}_{\mathcal{V}_{\gamma}}[\varphi] = \int \prod_{i=1}^{n_{\gamma}} \mathrm{d}g_{a} \prod_{(a,i;b,j)} \mathcal{V}_{\gamma}(g_{a}^{(i)}, g_{b}^{(j)}) \prod_{i=1}^{n_{\gamma}} \varphi(g_{a}^{(i)}) \,.$$

$$Z[arphi,ar{arphi}] = \sum_{arphi} {\sf w}_{\Gamma}(\{\lambda_{\gamma}\}) {\sf A}_{\Gamma}$$

- Γ = stranded diagrams dual to r-dimensional cellular complexes of arbitrary topology.
- Amplitudes A_{Γ} = sums over group theoretic data associated to the cellular complex.

Oriti 1110.5606; Reisenberger, Rovelli 0002083; Freidel 0505016; Baratin, Oriti 1002.4723; Finocchiaro, Oriti 1812.03550.

Luca Marchetti

Action

Partition function

Group Field Theories: theories of a field $\varphi : G^r \to \mathbb{C}$ defined on r copies of a group manifold G. r is the dimension of the "spacetime to be" (r = 4) and G is the local gauge group of gravity, $G = SL(2, \mathbb{C})$ or, for some models, G = SU(2).

$$S[arphi,ar{arphi}] = \int \mathrm{d}g_{a}ar{arphi}(g_{a})\mathcal{K}[arphi](g_{a}) + \sum_{\gamma}rac{\lambda_{\gamma}}{n_{\gamma}}\operatorname{Tr}_{\mathcal{V}\gamma}[arphi] + \mathrm{c.c.}$$

- Interaction terms are combinatorially non-local.
- Field arguments convoluted pairwise following the combinatorial pattern dictated by the graph γ:

$$\mathsf{Tr}_{\mathcal{V}_{\gamma}}[\varphi] = \int \prod_{i=1}^{n_{\gamma}} \mathrm{d}g_{a} \prod_{(a,i;b,j)} \mathcal{V}_{\gamma}(g_{a}^{(i)}, g_{b}^{(j)}) \prod_{i=1}^{n_{\gamma}} \varphi(g_{a}^{(i)}) \,.$$

$$Z[\varphi, \bar{\varphi}] = \sum_{\Gamma} w_{\Gamma}(\{\lambda_{\gamma}\})A_{\Gamma} = \text{ complete spin foam model.}$$

- Γ = stranded diagrams dual to r-dimensional cellular complexes of arbitrary topology.
- Amplitudes A_{Γ} = sums over group theoretic data associated to the cellular complex.
- \triangleright \mathcal{K} and \mathcal{V}_{γ} chosen to match the desired spin foam model.

Oriti 1110.5606; Reisenberger, Rovelli 0002083; Freidel 0505016; Baratin, Oriti 1002.4723; Finocchiaro, Oriti 1812.03550.

Luca Marchetti

Action

Partition function

The one-particle Hilbert space is $\mathcal{H}_{tetra} \subset \otimes_{a=1}^4 \mathcal{H}_{\Delta_a}$ (subset defined by the imposition of constraints)

Finocchiaro, Oriti 1812.03550; Baez, Barrett 9903060; Baratin, Oriti 1002.4723; Gielen, Oriti 1004.5371; Oriti 1310.7786.

The one-particle Hilbert space is $\mathcal{H}_{tetra} \subset \otimes_{a=1}^4 \mathcal{H}_{\Delta_a}$ (subset defined by the imposition of constraints)

```
Lie algebra (metric)
```

$$\mathcal{H}_{\Delta_a} = L^2(\mathfrak{g})$$

Constraints

Geometricity constraints (appropriately encoded in \mathcal{K} and \mathcal{V}_{γ}) allow for a r-1-simplicial interpretation of the fundamental quanta:

Closure

Simplicity

 $\sum_{a} B_{a} = 0$ (faces of the tetrahedron close).

• $X \cdot (B - \gamma \star B)_a = 0$ (EPRL);

$$\blacktriangleright X \cdot B_a = 0 (BC).$$

Finocchiaro, Oriti 1812.03550; Baez, Barrett 9903060; Baratin, Oriti 1002.4723; Gielen, Oriti 1004.5371; Oriti 1310.7786.

The one-particle Hilbert space is $\mathcal{H}_{tetra} \subset \otimes_{a=1}^4 \mathcal{H}_{\Delta_a}$ (subset defined by the imposition of constraints)

Lie algebra (metric) Lie group (connection) $\mathcal{H}_{\Delta_{\partial}} = L^{2}(\mathfrak{g}) \xleftarrow{\text{Non-comm.}}{\mathcal{H}_{\Delta_{\partial}}} = L^{2}(\mathcal{G})$ Constraints

Geometricity constraints (appropriately encoded in \mathcal{K} and \mathcal{V}_{γ}) allow for a r-1-simplicial interpretation of the fundamental quanta:

Closure

Simplicity

 $\sum_{a} B_{a} = 0$ (faces of the tetrahedron close). $\blacktriangleright X \cdot B_a = 0$ (BC).

$$X \cdot (B - \gamma \star B)_a = 0 \text{ (EPRL)};$$

Finocchiaro, Oriti 1812.03550: Baez, Barrett 9903060: Baratin, Oriti 1002.4723: Gielen, Oriti 1004.5371: Oriti 1310.7786.

The one-particle Hilbert space is $\mathcal{H}_{tetra} \subset \otimes_{a=1}^4 \mathcal{H}_{\Delta_a}$ (subset defined by the imposition of constraints)

Geometricity constraints (appropriately encoded in \mathcal{K} and \mathcal{V}_{γ}) allow for a r-1-simplicial interpretation of the fundamental quanta:

Closure

Simplicity

$$\begin{split} \sum_{a} B_{a} &= 0 & \blacktriangleright X \cdot (B - \gamma \star B)_{a} = 0 \text{ (EPRL);} \\ \text{(faces of the tetrahedron close).} & \blacktriangleright X \cdot B_{a} &= 0 \text{ (BC).} \end{split}$$

Finocchiaro, Oriti 1812.03550: Baez, Barrett 9903060: Baratin, Oriti 1002.4723: Gielen, Oriti 1004.5371: Oriti 1310.7786.

The one-particle Hilbert space is $\mathcal{H}_{\text{tetra}} \subset \bigotimes_{a=1}^{4} \mathcal{H}_{\Delta_a}$ (subset defined by the imposition of constraints)

Geometricity constraints (appropriately encoded in \mathcal{K} and \mathcal{V}_{γ}) allow for a r-1-simplicial interpretation of the fundamental quanta:

Closure

Simplicity

 $\sum_{a} B_a = 0$ (faces of the tetrahedron close). $\blacktriangleright X \cdot B_a = 0$ (BC).

• $X \cdot (B - \gamma \star B)_a = 0$ (EPRL);

- Impose simplicity and reduce to G = SU(2).
- Impose closure (gauge invariance).

Finocchiaro, Oriti 1812.03550: Baez, Barrett 9903060: Baratin, Oriti 1002.4723: Gielen, Oriti 1004.5371: Oriti 1310.7786.

LQG

The one-particle Hilbert space is $\mathcal{H}_{tetra} \subset \otimes_{a=1}^4 \mathcal{H}_{\Delta_a}$ (subset defined by the imposition of constraints)

Geometricity constraints (appropriately encoded in \mathcal{K} and \mathcal{V}_{γ}) allow for a r-1-simplicial interpretation of the fundamental quanta:

Closure

Simplicity

 $\sum_{a} B_{a} = 0$ (faces of the tetrahedron close).

•
$$X \cdot (B - \gamma \star B)_a = 0$$
 (EPRL);

close).
$$\blacktriangleright X \cdot B_a = 0$$
 (BC).

- Impose simplicity and reduce to G = SU(2).
 - Impose closure (gauge invariance).

$$\begin{aligned} \mathcal{H}_{\text{tetra}} &= \bigoplus_{\vec{j}} \text{Inv} \left[\bigotimes_{a=1}^{4} \mathcal{H}_{j_a} \right] \\ &= \text{open spin-network vertex space} \end{aligned}$$

Finocchiaro, Oriti 1812.03550; Baez, Barrett 9903060; Baratin, Oriti 1002.4723; Gielen, Oriti 1004.5371; Oriti 1310.7786.

Continuum Physics from GFTs

LQG

Tetrahedron wavefunction

 $\varphi(g_1,\ldots,g_4)$ (subject to constraints)

Oriti 1310.7786; Oriti 1408.7112; Sahlman, Sherif 2302.03612.

Oriti 1310.7786; Oriti 1408.7112; Sahlman, Sherif 2302.03612.

$$\mathcal{F}_{\mathsf{GFT}} = \bigoplus_{V=0}^{\infty} \operatorname{sym} \left[\mathcal{H}_{\mathsf{tetra}}^{(1)} \otimes \mathcal{H}_{\mathsf{tetra}}^{(2)} \otimes \ldots \mathcal{H}_{\mathsf{tetra}}^{(V)} \right]$$

- ▶ \mathcal{F}_{GFT} generated by action of $\hat{\varphi}^{\dagger}(g_a)$ on $|0\rangle$, with $[\hat{\varphi}(g_a), \hat{\varphi}^{\dagger}(g'_a)] = \mathbb{I}_G(g_a, g'_a)$.
- $\mathcal{H}_{\Gamma} \subset \mathcal{F}_{GFT}$, \mathcal{H}_{Γ} space of states associated to connected simplicial complexes Γ .
- Generic states do not correspond to connected simplicial lattices nor classical simplicial geometries.
- ▶ Similar to *H*_{LQG} but also different: no continuum intuition, orthogonality wrt nodes, not graphs.

Oriti 1310.7786; Oriti 1408.7112; Sahlman, Sherif 2302.03612.

$$\mathcal{F}_{\mathsf{GFT}} = \bigoplus_{V=0}^{\infty} \operatorname{sym} \left[\mathcal{H}_{\mathsf{tetra}}^{(1)} \otimes \mathcal{H}_{\mathsf{tetra}}^{(2)} \otimes \ldots \mathcal{H}_{\mathsf{tetra}}^{(V)} \right]$$

- ▶ \mathcal{F}_{GFT} generated by action of $\hat{\varphi}^{\dagger}(g_a)$ on $|0\rangle$, with $[\hat{\varphi}(g_a), \hat{\varphi}^{\dagger}(g'_a)] = \mathbb{I}_G(g_a, g'_a)$.
- $\mathcal{H}_{\Gamma} \subset \mathcal{F}_{GFT}$, \mathcal{H}_{Γ} space of states associated to connected simplicial complexes Γ .
- Generic states do not correspond to connected simplicial lattices nor classical simplicial geometries.
- ▶ Similar to *H*_{LQG} but also different: no continuum intuition, orthogonality wrt nodes, not graphs.

Volume operator
$$\hat{V} = \int dg_a^{(1)} dg_a^{(2)} V(g_a^{(1)}, g_a^{(2)}) \hat{\varphi}^{\dagger}(g_a^{(1)}) \hat{\varphi}(g_a^{(2)}) = \sum_{j_a, m_a, \iota} V_{j_a, \iota} \hat{\varphi}^{\dagger}_{j_a, m_a, \iota} \hat{\varphi}_{j_a, m_a, \iota}$$

Generic second quantization prescription to build a m + n-body operator: sandwich matrix elements between spin-network states between m powers of φ² and n powers of φ².

Oriti 1310.7786; Oriti 1408.7112; Sahlman, Sherif 2302.03612.

Luca Marchetti

Operators

Group Field Theories: theories of a field $\varphi : G^d \to \mathbb{C}$ defined on the product G^d .

r is the dimension of the "spacetime to be" (r = 4)and G is the local gauge group of gravity, $G = SL(2, \mathbb{C})$ or, for some models, G = SU(2).

Kinematics

Quanta are r - 1-simplices decorated with quantum geometric data:

▶ Geometricity constraints imposed analogously as before.

Dynamics

 S_{GFT} obtained by comparing Z_{GFT} with simplicial gravity path integral.

► Geometric data enter the action in a non-local and combinatorial fashion.

Li, Oriti, Zhang 1701.08719; Oriti 0912.2441; Gielen, Oriti 1311.1238; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Sindoni 1602.08104; ...

Group Field Theories: theories of a field φ : $G^r \times \mathbb{R}^{d_1} \to \mathbb{C}$ defined on the product of G^r and \mathbb{R}^{d_1} . r is the dimension of the "spacetime to be" (r = 4)and G is the local gauge group of gravity, $G = SL(2, \mathbb{C})$ or, for some models, G = SU(2).

Kinematics

Quanta are r - 1-simplices decorated with quantum geometric and scalar data:

- Geometricity constraints imposed analogously as before.
- Scalar field discretized on each *d*-simplex: each *d* − 1-simplex composing it carries values *χ* ∈ ℝ^d.

Dynamics

 S_{GFT} obtained by comparing Z_{GFT} with simplicial gravity + scalar fields path integral.

- Geometric data enter the action in a non-local and combinatorial fashion.
- ▶ Scalar field data are local in interactions.
- ► For minimally coupled, free, massless scalars:

 $\mathcal{K}(g_a, g_b; \chi^{\alpha}, \chi^{\alpha'}) = \mathcal{K}(g_a, g_b; (\chi^{\alpha} - \chi^{\alpha'})^2)$ $\mathcal{V}_5(g_a^{(1)}, \dots, g_a^{(5)}, \chi) = \mathcal{V}_5(g_a^{(1)}, \dots, g_a^{(5)})$

Li, Oriti, Zhang 1701.08719; Oriti 0912.2441; Gielen, Oriti 1311.1238; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Sindoni 1602.08104;

Microscopic description Group Field Theory Macroscopic description Cosmology

Localization (relationality)

Continuum limit and localization

The continuum limit problem

The (F)RG perspective

QFT on spacetime

QG theory

- Energy scale defines the flow from IR and UV.
- Only internal scales (localization problem).

The (F)RG perspective

QFT on spacetime

QG theory

- Energy scale defines the flow from IR and UV.
- Only internal scales (localization problem).

UV and IR have different meaning in QG!

The (F)RG perspective

QFT on spacetime

QG theory

- Energy scale defines the flow from IR and UV.
- Only internal scales (localization problem).

UV and IR have different meaning in QG!

- Theory space constrained by symmetries.
- Symmetries of QG models hard to classify.

QFT on spacetime

QG theory

- Energy scale defines the flow from IR and UV.
- Only internal scales (localization problem).

UV and IR have different meaning in QG!

- Theory space constrained by symmetries.
- Symmetries of QG models hard to classify.

Little control over QG theory space!

LM, Oriti, Pithis, Thürigen 2211.12768-2209.04297-2110.15336; Oriti 2112.02585, Finocchiaro, Oriti 2004.07361; Reuter, Saueressig 2019; ...
Continuum physics and QG: the general perspective

LM, Oriti, Pithis, Thürigen 2211.12768-2209.04297-2110.15336; Oriti 2112.02585, Finocchiaro, Oriti 2004.07361; Reuter, Saueressig 2019; ...

Continuum physics and QG: the general perspective

LM, Oriti, Pithis, Thürigen 2211.12768-2209.04297-2110.15336; Oriti 2112.02585, Finocchiaro, Oriti 2004.07361; Reuter, Saueressig 2019; ...

Local theory

• Mass
$$m^2 \equiv \mu$$
; interactions $\lambda \varphi^4$.

Two different phases:

$$rac{\delta S}{\delta arphi} = 0 : egin{cases} arphi_0 = 0 \ , & \mu > 0 \ arphi_0
eq 0 \ , & \mu < 0 \ . \ arphi_0
eq 0 \ , & \mu < 0 \ . \end{cases}$$

LM, Oriti, Pithis, Thürigen 2211.12768-2209.04297-2110.15336.

	Mean-field			Fluctuations	
sory	►	Mass $m^2 \equiv \mu$; interactions $\lambda \varphi^4$.	►	Gaussian approx.: $\varphi = \varphi_0 + \delta \varphi$.	
Local the	►	Two different phases:	►	Correlations: $C = \langle \delta \varphi^2 \rangle$.	
		$\delta S = 0, \mu > 0,$	►	Typical correlation scale ξ^2 :	
		$\overline{\delta\varphi} = 0 : \left\{ \varphi_0 \neq 0, \mu < 0. \right.$		$\xi^2 \to \infty$ as $\mu \to 0$.	

LM, Oriti, Pithis, Thürigen 2211.12768-2209.04297-2110.15336.

	Mean-field	Fluctuations	Conclusions
eory	• Mass $m^2 \equiv \mu$; interactions $\lambda \varphi^4$.	• Gaussian approx.: $\varphi = \varphi_0 + \delta \varphi$.	Mean-field valid only if
l th	Two different phases:	• Correlations: $C = \langle \delta \varphi^2 \rangle$.	$Q = \int_{\Omega_+} C / \int_{\Omega_+} \varphi_0^2 \ll 1$
ocal	$\delta S = 0, \mu > 0,$	Typical correlation scale ξ ² :	·
Ľ	$\overline{\delta\varphi} = 0 \cdot \left\{ \varphi_0 \neq 0 , \mu < 0 \right\}.$	$\xi^2 ightarrow \infty$ as $\mu ightarrow 0$.	$Q \ll 1 \iff d \ge d_{\sf c} = 4$

LM, Oriti, Pithis, Thürigen 2211.12768-2209.04297-2110.15336.

	Mean-field	Fluctuations	Conclusions
Local theory	 Mass m² ≡ μ; interactions λφ⁴. Two different phases: 	 Gaussian approx.: φ=φ₀+δφ. Correlations: C = ⟨δφ²⟩. Trained completing code, ζ² 	• Mean-field valid only if $Q = \int_{\Omega_{\xi}} C / \int_{\Omega_{\xi}} \varphi_0^2 \ll 1$
	$\frac{\delta \mathbf{S}}{\delta \varphi} = 0 : \begin{cases} \varphi_0 = 0 , & \mu > 0 , \\ \varphi_0 \neq 0 , & \mu < 0 . \end{cases}$	• Typical correlation scale ξ : $\xi^2 \to \infty$ as $\mu \to 0$.	$Q \ll 1 \iff d \ge d_{\sf c} = 4$

- Rank r, $G = \mathbb{R}^{d_G} \to G_L = T_L^{d_G}$.
- $L \rightarrow \infty, \mu \rightarrow 0$ not commuting.
- Non-local, generic interactions.

Toy GFT

LM, Oriti, Pithis, Thürigen 2211.12768-2209.04297-2110.15336.

	Mean-field	Fluctuations	Conclusions
Local theory	► Mass $m^2 \equiv \mu$; interactions $\lambda \varphi^4$. ► Two different phases: $\frac{\delta S}{\delta \varphi} = 0$: $\begin{cases} \varphi_0 = 0, & \mu > 0, \\ \varphi_0 \neq 0, & \mu < 0. \end{cases}$	 Gaussian approx.: φ = φ₀+δφ. Correlations: C = ⟨δφ²⟩. Typical correlation scale ξ²: ξ² → ∞ as μ → 0. 	► Mean-field valid only if $Q = \int_{\Omega_{\xi}} C / \int_{\Omega_{\xi}} \varphi_0^2 \ll 1$ $Q \ll 1 \longleftrightarrow d \ge d_c = 4$
Toy GFT	 Rank r, G = ℝ^d_G → G_L = T^d_LG. L→∞, µ→0 not commuting. Non-local, generic interactions. 		Same as FRG $d = d_G(r - s_0),$ $d_c = 2n_\gamma / (n_\gamma - 2).$

LM, Oriti, Pithis, Thürigen 2211.12768-2209.04297-2110.15336.

	Mean-field	Fluctuations	Conclusions
cal theory	 Mass m² ≡ μ; interactions λφ⁴. Two different phases: δS (φ₂ = 0, μ ≥ 0) 	 Gaussian approx.: φ=φ₀+δφ. Correlations: C = ⟨δφ²⟩. Typical correlation scale ε²: 	• Mean-field valid only if $Q = \int_{\Omega_{\xi}} C / \int_{\Omega_{\xi}} \varphi_0^2 \ll 1$
Lo	$\frac{\delta S}{\delta \varphi} = 0 : \begin{cases} \varphi_0 = 0, & \mu > 0, \\ \varphi_0 \neq 0, & \mu < 0. \end{cases}$	$\xi^2 ightarrow \infty$ as $\mu ightarrow 0$.	$Q \ll 1 \iff d \ge d_{ m c} = 4$
Toy GFT	 Rank r, G = ℝ^{dG} → G_L = T_L^{dG}. L→∞, µ→0 not commuting. Non-local, generic interactions. 	 Effective mass b_j = μ[1-X(j)]. C expands in zero modes. Small ξ if μ→0 before L→∞. \$0=1, X(i) = 4(∏ δ_i, a + 	Same as FRG $d = d_G(r - s_0),$ $d_c = 2n_\gamma/(n_\gamma - 2).$
		$n_{\gamma} = 4 \mathcal{X}(J) = 4 \left(\prod_{c} \delta_{jc,0} + \right)$	$\prod_{b\neq c} o_{j_b,0} + o_{j_c,0}$

LM, Oriti, Pithis, Thürigen 2211.12768-2209.04297-2110.15336.

		Mean-field	Fluctuations	Conclusions
cal theory	•	• Mass $m^2 \equiv \mu$; interactions $\lambda \varphi^4$. • Two different phases: $\delta S = \{\varphi = 0, \mu > 0\}$	 Gaussian approx.: φ=φ₀+δφ. Correlations: C = ⟨δφ²⟩. Turical correlation coals c²: 	• Mean-field valid only if $Q = \int_{\Omega_\xi} C / \int_{\Omega_\xi} \varphi_0^2 \ll 1$
Γo		$\frac{\delta S}{\delta \varphi} = 0 : \begin{cases} \varphi_0 = 0, & \mu > 0, \\ \varphi_0 \neq 0, & \mu < 0. \end{cases}$	$\xi^2 ightarrow \infty$ as $\mu ightarrow 0$.	$Q \ll 1 \longleftrightarrow d \ge d_{\sf c} = 4$
Tov GFT	•	Rank r, $G = \mathbb{R}^{d_G} \rightarrow G_L = T_L^{d_G}$. $L \rightarrow \infty, \mu \rightarrow 0$ not commuting. Non-local, generic interactions.	 Effective mass b_j = µ[1−X(j)]. C expands in zero modes. Small ξ if µ→0 before L→∞. 	Same as FRG $d = d_G(r - s_0),$ $d_c = 2n_\gamma/(n_\gamma - 2).$
		metonic	$\sum_{c} \int_{-c}^{s_0=1,} \mathcal{X}(j) = 4 \left(\prod_{c} \delta_{j_c,0} + \right)$	$\prod_{b\neq c} \delta_{j_b,0} + \delta_{j_c,0} \big)$
stic GFT		Matter (scalars): local $G_I = \mathbb{R}^{d_I}$.		

LM, Oriti, Pithis, Thürigen 2211.12768-2209.04297-2110.15336.

	Mean-field	Fluctuations	Conclusions
cal theory	 Mass m² ≡ μ; interactions λφ⁴. Two different phases: δS (φ₂ = 0, μ ≥ 0) 	 Gaussian approx.: φ=φ₀+δφ. Correlations: C = ⟨δφ²⟩. Typical correlation scale ε²: 	• Mean-field valid only if $Q = \int_{\Omega_{\xi}} C / \int_{\Omega_{\xi}} \varphi_0^2 \ll 1$
Γο	$\frac{\partial \sigma}{\partial \varphi} = 0 : \begin{cases} \varphi_0 & \sigma, & \mu > \sigma, \\ \varphi_0 \neq 0, & \mu < 0. \end{cases}$	$\xi^2 ightarrow \infty$ as $\mu ightarrow 0$.	$Q \ll 1 \iff d \ge d_{c} = 4$
Toy GFT	 Rank r, G = ℝ^d_G → G_L = T^d_LG. L→∞, μ→0 not commuting. Non-local, generic interactions. 	 Effective mass b_j = µ[1−X(j)]. C expands in zero modes. Small ξ if µ→0 before L→∞. 	Same as FRG $d = d_G(r - s_0),$ $d_c = 2n_\gamma/(n_\gamma - 2).$
	"elonic	$ \sum_{c} \sum_{n_{\gamma}=4}^{s_{0}=1,} \mathcal{X}(j) = 4 \left(\prod_{c} \delta_{j_{c},0} + \right) $	$\prod_{b\neq c} \delta_{j_b,0} + \delta_{j_c,0} \big)$
Realistic GFT	• Matter (scalars): local $G_1 = \mathbb{R}^{n_1}$.		$\bullet d = d_1 + d_g(r - s_0).$

LM, Oriti, Pithis, Thürigen 2211.12768-2209.04297-2110.15336.

LM, Oriti, Pithis, Thürigen 2211.12768-2209.04297-2110.15336

The localization problem

Quite well understood from a classical perspective, less from a quantum perspective.

LM, Oriti 2008.02774; Rovelli Class. Quantum Grav. 8 297; Dittrich 0507106; Goeller, Höhn, Kirklin 2206.01193; ...

LM, Oriti 2008.02774; Rovelli Class. Quantum Grav. 8 297; Dittrich 0507106; Goeller, Höhn, Kirklin 2206.01193; ...

result of a coarse-graining of some fundamental d.o.f.

LM, Oriti 2008.02774; Rovelli Class. Quantum Grav. 8 297; Dittrich 0507106; Goeller, Höhn, Kirklin 2206.01193; ...

LM, Oriti 2008.02774; Rovelli Class. Quantum Grav. 8 297; Dittrich 0507106; Goeller, Höhn, Kirklin 2206.01193; ...

Luca Marchetti

Emergent effective relational strategy

PROTO-GEOMETRIC PERSPECTIVE-DEPENDENT PERSPECTIVE-NEUTRAL PRE-GEOMETRIC **Basic principles**

 Emergence Relational strategy in terms of collective observables and states.
 Effectiveness Averaged relational localization. Internal frame not too quantum.

LM, Oriti 2008.02774; Bojowald, Hoehn, Tsobanjan 1011.3040; Bojowald, Tsobanjan 0906.1772;

Emergent effective relational strategy

Concrete example: scalar field clock

Emergence

- Identify (collective) states |Ψ⟩ admitting a continuum proto-geometric interpretation.
- Identify a set of collective observables:

LM, Oriti 2008.02774; Bojowald, Hoehn, Tsobanjan 1011.3040; Bojowald, Tsobanjan 0906.1772;

Emergent effective relational strategy

Concrete example: scalar field clock

Emergence

- Identify (collective) states |Ψ⟩ admitting a continuum proto-geometric interpretation.
- Identify a set of collective observables:

Effectivness

It exists a "Hamiltonian" Â such that

$$i \frac{\mathrm{d}}{\mathrm{d} \langle \hat{\chi} \rangle_{\Psi}} \langle \hat{O}_a \rangle_{\Psi} = \langle [\hat{H}, \hat{O}_a] \rangle_{\Psi} \, ,$$

and whose moments coincide with those of $\hat{\Pi}.$

LM, Oriti 2008.02774; Bojowald, Hoehn, Tsobanjan 1011.3040; Bojowald, Tsobanjan 0906.1772;

Luca Marchetti

Microscopic description Group Field Theory Macroscopic description Cosmology

Relationality (effective)

Quantum gravity coherent states

GFT coherent states

▶ From the GFT perspective, continuum geometries are associated to large number of quanta.

The simplest states that can accommodate infinite number of quanta are coherent states:

$$|\sigma\rangle = \mathcal{N}_{\sigma} \exp\left[\int \mathrm{d}^{d_{l}} \chi \int \mathrm{d}g_{s} \,\sigma(g_{s},\chi^{lpha}) \hat{\varphi}^{\dagger}(g_{s},\chi^{lpha})\right]|0
angle \,.$$

LM, Oriti 2008.02774-2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Oriti, Sindoni 1311.1238.

Quantum gravity coherent states

GFT coherent states

▶ From the GFT perspective, continuum geometries are associated to large number of quanta.

The simplest states that can accommodate infinite number of quanta are coherent states:

$$|\sigma
angle = \mathcal{N}_{\sigma} \exp\left[\int \mathrm{d}^{d_l}\chi \int \mathrm{d}g_{a}\,\sigma(g_{a},\chi^{lpha})\hat{arphi}^{\dagger}(g_{a},\chi^{lpha})
ight]|0
angle\,.$$

Mean-field approximation

 $\begin{aligned} \bullet \quad & \text{When interactions are small (certainly satisfied in an appropriate regime) the dynamics of σ is:} \\ & \left\langle \frac{\delta S_{\text{GFT}}[\hat{\varphi}, \hat{\varphi}^{\dagger}]}{\delta \hat{\varphi}(g_l, x^{\alpha})} \right\rangle_{\sigma} = \int \mathrm{d}h_s \int \mathrm{d}\chi \, \mathcal{K}(g_s, h_s, (x^{\alpha} - \chi^{\alpha})^2) \sigma(h_s, \chi^{\alpha}) + \lambda \frac{\delta \, V[\varphi, \varphi^*]}{\delta \varphi^*(g_s, x^{\alpha})} \bigg|_{\varphi = \sigma} = \mathbf{0} \,. \end{aligned}$

▶ Non-perturbative: equivalent to a mean-field (saddle-point) approximation of Z.

LM, Oriti 2008.02774-2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Oriti, Sindoni 1311.1238

Quantum gravity coherent states

Localization

GFT coherent states

▶ From the GFT perspective, continuum geometries are associated to large number of quanta.

The simplest states that can accommodate infinite number of quanta are coherent states:

$$|\sigma
angle = \mathcal{N}_{\sigma} \exp\left[\int \mathrm{d}^{d_l}\chi \int \mathrm{d}g_{a}\,\sigma(g_{a},\chi^{lpha})\hat{arphi}^{\dagger}(g_{a},\chi^{lpha})
ight]|0
angle\,.$$

Mean-field approximation

► When interactions are small (certainly satisfied in an appropriate regime) the dynamics of σ is: $\left\langle \frac{\delta S_{GFT}[\hat{\varphi}, \hat{\varphi}^{\dagger}]}{\delta \hat{\varphi}(g_l, x^{\alpha})} \right\rangle_{\sigma} = \int dh_s \int d\chi \, \mathcal{K}(g_s, h_s, (x^{\alpha} - \chi^{\alpha})^2) \sigma(h_s, \chi^{\alpha}) + \lambda \frac{\delta V[\varphi, \varphi^*]}{\delta \varphi^*(g_s, x^{\alpha})} \bigg|_{\varphi=\sigma} = \mathbf{0} \,.$

▶ Non-perturbative: equivalent to a mean-field (saddle-point) approximation of Z.

Relational peaking

 $\begin{array}{l|l} \hline \label{eq:scalar} \mbox{Relational localization implemented at an effective level on observable averages. E.g., <math>\chi^{\mu}$ -frame: $\sigma_x = (\mbox{fixed peaking function } \eta_x) \times (\mbox{dynamically determined reduced wavefunction } \tilde{\sigma}),$ $& & \\ \hline \mbox{$\mathcal{O}(x) \equiv \langle \hat{\mathcal{O}} \rangle_{\sigma_x} \simeq \mathcal{O}[\tilde{\sigma}]|_{\chi^{\mu} = x^{\mu}}$ & $\hat{N} = \int \mathrm{d}g_a \, \mathrm{d}^4 \chi^{\mu} \, \hat{\varphi}^{\dagger}(g_a, \chi^{\mu}) \hat{\varphi}(g_a, \chi^{\mu})$ \\ & & \\ &$

LM, Oriti 2008.02774-2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Oriti, Sindoni 1311.1238

Coarse-graining (mean-field)

Microscopic description Group Field Theory

Collective states

Macroscopic description Based on averages of collective observables

Cosmology

Relationality (effective)

FLRW sector

Mean-field approximation

- Homogeneity: σ̃ depends only on MCMF clock χ⁰.
- ▶ Isotropy: $\tilde{\sigma}_{\upsilon} \equiv \rho_{\upsilon} e^{i\theta_{\upsilon}}$ ($\upsilon_{\text{EPRL}} \in \mathbb{N}/2$, $\upsilon_{\text{BC}} \in \mathbb{R}$).
- Mesoscopic regime: negligible interactions.

$$0 = \tilde{\sigma}_{\upsilon}^{\prime\prime} - 2i\tilde{\pi}_0 \tilde{\sigma}_{\upsilon}^{\prime} - E_{\upsilon}^2 \tilde{\sigma},$$

$$V(x^0) = \sum_{\upsilon} V_{\upsilon} |\tilde{\sigma}_{\upsilon}|^2 (x^0).$$

LM, Oriti 2008.02774-2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Oriti, Pithis 2112.00091.

Mean-field approximation

LM, Oriti 2008.02774-2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Oriti, Pithis 2112.00091.

Mean-field approximation

Homogeneity: õ depends only on MCMF clock
$$\chi^0$$
.
Isotropy: $\tilde{\sigma}_{\upsilon} \equiv \rho_{\upsilon} e^{i\theta_{\upsilon}}$ ($\upsilon_{\text{EPRL}} \in \mathbb{N}/2$, $\upsilon_{\text{BC}} \in \mathbb{R}$).
Mesoscopic regime: negligible interactions.

$$V(x^0) = \int_{-\upsilon}^{\upsilon} V_{\upsilon} |\tilde{\sigma}_{\upsilon}|^2 (x^0).$$
Effective volume dynamics

$$\left(\frac{V'}{3V}\right)^2 = \left(\frac{2\sum_{\upsilon} V_{\upsilon} \rho_{\upsilon} \operatorname{sgn}(\rho'_{\upsilon}) \sqrt{\mathcal{E}_{\upsilon} - Q_{\upsilon}^2 / \rho_{\upsilon}^2 + \mu_{\upsilon}^2 \rho_{\upsilon}^2}}{3\sum_{\upsilon} V_{\upsilon} \rho_{\upsilon}^2}\right)^2, \quad \frac{V''}{V} = \frac{2\sum_{\upsilon} V_{\upsilon} \left[\mathcal{E}_{\upsilon} + 2\mu_{\upsilon}^2 \rho_{\upsilon}^2\right]}{\sum_{\upsilon} V_{\upsilon} \rho_{\upsilon}^2}$$

Large number of quanta (large volume and late times)

- ✓ Volume quantum fluctuations under control.
- If μ²_v is mildly dependent on v (or one v_o is dominating) and equal to 3πG

$$(V'/3V)^2 \simeq 4\pi G/3 \longrightarrow \text{flat FLRW}$$

LM, Oriti 2008.02774-2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Oriti, Pithis 2112.00091.

Classical limit

Mean-field approximation

Large number of quanta (large volume and late times)

- ✓ Volume quantum fluctuations under control.
- If μ²_v is mildly dependent on v (or one v_o is dominating) and equal to 3πG

$$(V'/3V)^2 \simeq 4\pi G/3 \longrightarrow \text{flat FLRW}$$

 $\begin{array}{l} \checkmark \quad \mbox{Classical limit seems universal!} \\ \checkmark \quad x^0 = \langle \hat{\chi}^0 \rangle_{\sigma_{\chi^0}}, \mbox{ clock quantum fluct.} \simeq 0. \\ \cr \checkmark \quad \langle \hat{\Pi}^0 \rangle_{\sigma_{\chi^0}} = \langle \hat{\mathcal{H}}_\sigma \rangle_{\sigma_{\chi^0}} \mbox{ (higher moments } \simeq 0). \end{array}$

Effective relational framework reliable!

LM, Oriti 2008.02774-2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Oriti, Pithis 2112.00091.

Luca Marchetti

Classical limit

Mean-field approximation

Homogeneity:
$$\tilde{\sigma}$$
 depends only on MCMF clock χ^0 .
Isotropy: $\tilde{\sigma}_{\upsilon} \equiv \rho_{\upsilon} e^{i\theta_{\upsilon}}$ ($\upsilon_{\text{EPRL}} \in \mathbb{N}/2$, $\upsilon_{\text{BC}} \in \mathbb{R}$).
Mesoscopic regime: negligible interactions.
$$V(x^0) = \int_{-\upsilon}^{t} V_{\upsilon} |\tilde{\sigma}_{\upsilon}|^2(x^0).$$
Effective volume dynamics
$$\left(\frac{V'}{3V}\right)^2 = \left(\frac{2\sum_{\upsilon} V_{\upsilon}\rho_{\upsilon} \operatorname{sgn}(\rho'_{\upsilon})\sqrt{\mathcal{E}_{\upsilon} - Q_{\upsilon}^2/\rho_{\upsilon}^2 + \mu_{\upsilon}^2\rho_{\upsilon}^2}}{3\sum_{\upsilon} V_{\upsilon}\rho_{\upsilon}^2}\right)^2, \quad \frac{V''}{V} = \frac{2\sum_{\upsilon} V_{\upsilon} \left[\mathcal{E}_{\upsilon} + 2\mu_{\upsilon}^2\rho_{\upsilon}^2\right]}{\sum_{\upsilon} V_{\upsilon}\rho_{\upsilon}^2}$$

Smaller number of quanta (smaller volume and early times)

 For a large range of initial conditions (at least one Q_v ≠ 0 or one E_v < 0)

Singularity res. into quantum bounce!

LM, Oriti 2008.02774-2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Oriti, Pithis 2112.00091.

Quantum bounce

Mean-field approximation

Smaller number of quanta (smaller volume and early times)

- For a large range of initial conditions (at least one Q_v ≠ 0 or one E_v < 0)
- Volume quantum fluctuations may be large!

Singularity res. into quantum bounce?

LM, Oriti 2008.02774-2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Oriti, Pithis 2112.00091.

Quantum bounce

Mean-field approximation

Smaller number of quanta (smaller volume and early times)

- For a large range of initial conditions (at least one Q_v ≠ 0 or one E_v < 0)
- Volume quantum fluctuations may be large!

Singularity res. into quantum bounce?

> x^0 may not coincide with $\langle \hat{\chi}^0 \rangle_{\sigma_{\gamma^0}}$ anymore!

- Clock quantum fluctuations may be large!
- $\blacktriangleright \langle \hat{\Pi}^0 \rangle_{\sigma_{\chi^0}} \neq \langle \hat{H}_{\sigma} \rangle_{\sigma_{\chi^0}} \text{ (higher moments } \neq 0\text{)}.$

Effective rel. framework may break down!

LM, Oriti 2008.02774-2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Oriti, Pithis 2112.00091.

Luca Marchetti

Quantum bounce

A state-agnostic approach

Effective approach for quantum systems

Construction of the effective system

Step 1: definition of the quantum phase space

- Describe the system with $\langle \hat{A}_i \rangle$ and moments.
- Inherited Poisson structure: $\{\langle \cdot \rangle, \langle \cdot \rangle\} = (i\hbar)^{-1} \langle [\cdot, \cdot] \rangle$

Step 2: definition of the constraints

•
$$\langle \hat{C} \rangle = 0$$
 and $\langle (\widehat{pol} - \langle \widehat{pol} \rangle) \hat{C} \rangle = 0$ eff. constraints;

Step 3: truncation scheme (e.g. semiclassicality)

LM, Gielen, Oriti, Polaczek 2110.11176; Bojowald, Sandhoefer, Skirzewski, Tsobanjan 0804.3365; Bojowald Tsobanjan 0906.1772.

Effective approach for quantum systems

Construction of the effective system

Step 1: definition of the quantum phase space

- Describe the system with $\langle \hat{A}_i \rangle$ and moments.
- Inherited Poisson structure: $\{\langle \cdot \rangle, \langle \cdot \rangle\} = (i\hbar)^{-1} \langle [\cdot, \cdot] \rangle$

Step 2: definition of the constraints

•
$$\langle \hat{C} \rangle = 0$$
 and $\langle (\widehat{\text{pol}} - \langle \widehat{\text{pol}} \rangle) \hat{C} \rangle = 0$ eff. constraints;

Step 3: truncation scheme (e.g. semiclassicality)

Relational description

Step 1: choose a clock \hat{T} ([\hat{T}, \hat{P}] closes)

Step 2: gauge fixing

► 1st order: $\Delta(TA_i) = 0, A_i \in \mathcal{A} \setminus \{\hat{P}\}.$

Step 3: relational rewriting

 Write evolution of the remaining variables wrt. T (classical clock).

LM, Gielen, Oriti, Polaczek 2110.11176; Bojowald, Sandhoefer, Skirzewski, Tsobanjan 0804.3365; Bojowald Tsobanjan 0906.1772.
Effective approach for quantum systems

Construction of the effective system

Step 1: definition of the quantum phase space

- Describe the system with $\langle \hat{A}_i \rangle$ and moments.
- Inherited Poisson structure: $\{\langle \cdot \rangle, \langle \cdot \rangle\} = (i\hbar)^{-1} \langle [\cdot, \cdot] \rangle$

Step 2: definition of the constraints

•
$$\langle \hat{C} \rangle = 0$$
 and $\langle (\widehat{\text{pol}} - \langle \widehat{\text{pol}} \rangle) \hat{C} \rangle = 0$ eff. constraints;

Step 3: truncation scheme (e.g. semiclassicality)

Relational description

Step 1: choose a clock \hat{T} ([\hat{T}, \hat{P}] closes)

Step 2: gauge fixing

► 1st order: $\Delta(TA_i) = 0, A_i \in \mathcal{A} \setminus \{\hat{P}\}.$

Step 3: relational rewriting

 Write evolution of the remaining variables wrt. T (classical clock).

How can this framework be generalized to a **field theory context**? Infinitely many algebra generators. Infinitely many quantum constraints.

LM, Gielen, Oriti, Polaczek 2110.11176; Bojowald, Sandhoefer, Skirzewski, Tsobanjan 0804.3365; Bojowald Tsobanjan 0906.1772.

Effective approach for quantum systems

Construction of the effective system

Step 1: definition of the quantum phase space

- Describe the system with $\langle \hat{A}_i \rangle$ and moments.
- Inherited Poisson structure: $\{\langle \cdot \rangle, \langle \cdot \rangle\} = (i\hbar)^{-1} \langle [\cdot, \cdot] \rangle$

Step 2: definition of the constraints

•
$$\langle \hat{C} \rangle = 0$$
 and $\langle (\widehat{pol} - \langle \widehat{pol} \rangle) \hat{C} \rangle = 0$ eff. constraints;

Step 3: truncation scheme (e.g. semiclassicality)

Relational description

Step 1: choose a clock \hat{T} ([\hat{T}, \hat{P}] closes)

Step 2: gauge fixing

▶ 1st order: $\Delta(TA_i) = 0, A_i \in \mathcal{A} \setminus \{\hat{P}\}.$

Step 3: relational rewriting

 Write evolution of the remaining variables wrt. T (classical clock).

How can this framework be generalized to a **field theory context**? Infinitely many algebra generators. Infinitely many quantum constraints.

Additional truncation scheme

Motivations

- Interest in a coarse grained system characterized by a small number of macroscopic (1-body) observables.
- Expected to be the case for cosmology.

Coarse-graining truncation

- When the e.o.m. are linear, consider an integrated 1-body quantum constraint.
- Algebra generated by minimal set of physically relevant operators (including constraint).

LM, Gielen, Oriti, Polaczek 2110.11176; Bojowald, Sandhoefer, Skirzewski, Tsobanjan 0804.3365; Bojowald Tsobanjan 0906.1772.

A state agnostic approach: application to GFT

A state agnostic approach: application to GFT

GFT with MCMF scalar field

Free e.o.m.:
$$\mathcal{D}\varphi \equiv (m^2 + \hbar^2 \Delta_g + \lambda \hbar^2 \partial_{\chi}^2)\varphi = 0.$$

• Quantum constr.
$$\hat{C} = \int \hat{\varphi}^{\dagger} \mathcal{D} \hat{\varphi} = m^2 \hat{N} - \hat{\Lambda} - \lambda \hat{\Pi}_2$$
. • \hat{K} such that $[\hat{\Lambda}, \hat{K}] = i\hbar\alpha \hat{K}$.

• Generators: $\hat{\chi}$, $\hat{\Pi}$, $\hat{\Pi}_2$, \hat{N} , $\hat{\Lambda}$ and \hat{K} .

A state agnostic approach: application to GFT

How can this framework be generalized to a field theory context?

Infinitely many algebra generators.

Infinitely many quantum constraints.

• Quantum constr. $\hat{C} = \int \hat{\varphi}^{\dagger} \mathcal{D} \hat{\varphi} = m^2 \hat{N} - \hat{\Lambda} - \lambda \hat{\Pi}_2.$

Expectation values and variances

- Choose \hat{K} as clock variable.
- Relational evolution of $\langle \hat{\chi} \rangle$ in agreement with classical cosmology.

• \hat{K} such that $[\hat{\Lambda}, \hat{K}] = i\hbar\alpha\hat{K}$.

- Fluctuations are decoupled from expect. values.
- If they are small at small $\langle \hat{K} \rangle$ they stay small even at large $\langle \hat{K} \rangle$ (due to a constant $\langle \hat{N} \rangle$).

LM, Gielen, Oriti, Polaczek 2110.11176.

Luca Marchetti

Inhomogeneous sector

Classical

Setting

- 4 MCMF reference fields (χ^0, χ^i) ,
- 1 MCMF matter field φ dominating the energy-momentum budget and slightly relationally inhomogeneous wrt. χⁱ.

Jercher, LM, Pithis 2310.17549-2308.13261; LM, Oriti 2112.12677; Jercher, Oriti, Pithis 2206.15442.

Classical

Setting

- 4 MCMF reference fields (χ^0, χ^i) ,
 - ► 1 MCMF matter field ϕ dominating the energy-momentum budget and slightly relationally inhomogeneous wrt. χ^{i} .

Quantum

- Quanta with spacelike (+) and timelike (-) character to causally couple the physical frame.
- Geometry from quantum entanglement: inhomogeneities from QG correlations.

Jercher, LM, Pithis 2310.17549-2308.13261; LM, Oriti 2112.12677; Jercher, Oriti, Pithis 2206.15442.

Classical

Setting

Model

- 4 MCMF reference fields (χ^0, χ^i) ,
- 1 MCMF matter field φ dominating the energy-momentum budget and slightly relationally inhomogeneous wrt. χⁱ.

Quantum

- Quanta with spacelike (+) and timelike (-) character to causally couple the physical frame.
- Geometry from quantum entanglement: inhomogeneities from QG correlations.

Two-sector GFT

- ▶ BC model: $\varphi_{\pm} \equiv \varphi(g_a, X_{\pm}, \Phi)$, with $\Phi = (\chi^{\mu}, \phi) \in \mathbb{R}^5$ and $K_{\text{GFT}} = K_+ + K_-$
- Since χ^0 (χ^i) propagates along timelike (spacelike) edges:
 - K_+ independent of χ^i . K_- independent of χ^0 .

Jercher, LM, Pithis 2310.17549-2308.13261; LM, Oriti 2112.12677; Jercher, Oriti, Pithis 2206.15442.

Classical

Setting

Model

- 4 MCMF reference fields (χ^0, χ^i) ,
- 1 MCMF matter field φ dominating the energy-momentum budget and slightly relationally inhomogeneous wrt. χⁱ.

Quantum

- Quanta with spacelike (+) and timelike (-) character to causally couple the physical frame.
- Geometry from quantum entanglement: inhomogeneities from QG correlations.

Two-sector GFT

- BC model: φ_± ≡ φ(g_a, X_±, Φ), with Φ = (χ^μ, φ) ∈ ℝ⁵ and K_{GFT} = K₊ + K_−
 Since χ⁰ (χⁱ) propagates along timelike (spacelike) edges:
 - K_+ independent of χ^i . K_- independent of χ^0 .

Two-body correlations

$$|\Delta\rangle = \mathcal{N}_{\psi} \exp(\hat{\sigma} \otimes \mathbb{I}_{-} + \mathbb{I}_{+} \otimes \widehat{\tau} + \widehat{\delta \Phi} \otimes \mathbb{I}_{-} + \widehat{\delta \Psi} + \mathbb{I}_{+} \otimes \widehat{\delta \Xi}) \ket{0}$$

Jercher, LM, Pithis 2310.17549-2308.13261; LM, Oriti 2112.12677; Jercher, Oriti, Pithis 2206.15442.

Continuum Physics from GFTs

notation: $(\cdot, \cdot) = \int_{\Omega} d\Omega \cdot \times \cdot$

Classical

Setting

Model

- 4 MCMF reference fields (χ^0, χ^i) ,
- 1 MCMF matter field φ dominating the energy-momentum budget and slightly relationally inhomogeneous wrt. χⁱ.

Quantum

- Quanta with spacelike (+) and timelike (-) character to causally couple the physical frame.
- Geometry from quantum entanglement: inhomogeneities from QG correlations.

Two-sector GFT

- BC model: φ_± ≡ φ(g_a, X_±, Φ), with Φ = (χ^μ, φ) ∈ ℝ⁵ and K_{GFT} = K₊ + K_−
 Since χ⁰ (χⁱ) propagates along timelike (spacelike) edges:
 - K_+ independent of χ^i . K_- independent of χ^0 .

Two-body correlations

$$|\Delta\rangle = \mathcal{N}_{\psi} \exp(\hat{\sigma} \otimes \mathbb{I}_{-} + \mathbb{I}_{+} \otimes \widehat{\tau} + \widehat{\delta \Phi} \otimes \mathbb{I}_{-} + \widehat{\delta \Psi} + \mathbb{I}_{+} \otimes \widehat{\delta \Xi}) \ket{0}$$

Background

- $\hat{\sigma} = (\sigma, \hat{\varphi}^{\dagger}_{+})$: spacelike condensate.
- $\hat{\tau} = (\tau, \hat{\varphi}^{\dagger}_{-})$: timelike condensate.
- τ , σ peaked; $\tilde{\tau}$, $\tilde{\sigma}$ homogeneous.

Jercher, LM, Pithis 2310.17549-2308.13261; LM, Oriti 2112.12677; Jercher, Oriti, Pithis 2206.15442.

Continuum Physics from GFTs

notation: $(\,\cdot\,,\,\cdot\,)=\!\!\!\int_{\Omega}\mathrm{d}\Omega\,\cdot\,\times\,\cdot$

Classical

Setting

Model

Collective states

- 4 MCMF reference fields (χ^0, χ^i) ,
- 1 MCMF matter field ϕ dominating the energy-momentum budget and slightly relationally inhomogeneous wrt. χ' .

Quantum

- ▶ Quanta with spacelike (+) and timelike (-) character to causally couple the physical frame.
- Geometry from quantum entanglement: inhomogeneities from QG correlations.

Two-sector GET

- ▶ BC model: $\varphi_{\pm} \equiv \varphi(g_a, X_{\pm}, \Phi)$, with $\Phi = (\chi^{\mu}, \phi) \in \mathbb{R}^5$ and $K_{\text{GFT}} = K_+ + K_-$ • Since $\chi^0(\chi^i)$ propagates along timelike (spacelike) edges:
 - K_+ independent of χ^i . K_- independent of χ^0 .

Two-body correlations

$$|\Delta
angle = \mathcal{N}_{\psi} \exp(\hat{\sigma} \otimes \mathbb{I}_{-} + \mathbb{I}_{+} \otimes \widehat{ au} + \widehat{\delta \Phi} \otimes \mathbb{I}_{-} + \widehat{\delta \Psi} + \mathbb{I}_{+} \otimes \widehat{\delta \Xi}) \ket{0}$$

Background

- $\hat{\tau} = (\tau, \hat{\varphi}^{\dagger}_{-})$: timelike condensate.
- τ , σ peaked; $\tilde{\tau}$, $\tilde{\sigma}$ homogeneous.

Perturbations

notation: $(\cdot, \cdot) = \int_{\Omega} d\Omega \cdot \times \cdot$

- $\hat{\sigma} = (\sigma, \hat{\varphi}_{+}^{\dagger})$: spacelike condensate. $\hat{\delta \Phi} = (\delta \Phi, \hat{\varphi}_{+}^{\dagger} \hat{\varphi}_{+}^{\dagger}), \ \hat{\delta \Psi} = (\delta \Psi, \hat{\varphi}_{+}^{\dagger} \hat{\varphi}_{-}^{\dagger}), \ \hat{\delta \Xi} = (\delta \Xi, \hat{\varphi}_{-}^{\dagger} \hat{\varphi}_{-}^{\dagger}).$
 - $\delta \Phi$, $\delta \Psi$ and $\delta \Xi$ small and relationally inhomogeneous.
 - Pert. = rel. nearest neighbour 2-body correlations.

Jercher, LM, Pithis 2310.17549-2308.13261; LM, Oriti 2112.12677; Jercher, Oriti, Pithis 2206.15442.

Luca Marchetti

Emergent dynamics of cosmic inhomogeneities

Mean-field dynamics

≥ 2 mean-field eqs. for 3 variables
$$(\delta \Phi, \delta \Psi, \delta \Xi)$$
:
 $\langle \delta S / \delta \hat{\varphi}_{+}^{\dagger} \rangle_{\Lambda} = 0 = \langle \delta S / \delta \hat{\varphi}_{-}^{\dagger} \rangle_{\Lambda}$

$$\left< \delta S / \delta \hat{\varphi}_{+}^{\dagger} \right>_{\Delta} = 0 = \left< \delta S / \delta \hat{\varphi}_{-}^{\dagger} \right>_{\Delta}$$

Late times and single (spacelike) rep. label. ►

Jercher, LM, Pithis 2310.17549-2308.13261.

Emergent dynamics of cosmic inhomogeneities

Mean-field dynamics

- Late times and single (spacelike) rep. label.
- Physics captured by rel. localized averages:

$$\left\langle \hat{\mathcal{O}}_{\mathsf{GFT}} \right\rangle_\Delta = \bar{\mathcal{O}}_{\mathsf{GFT}}(x^0) + \delta \mathcal{O}_{\mathsf{GFT}}(x^0, \mathbf{x}) \,.$$

Classical limit fixes dynamical freedom.

Jercher, LM, Pithis 2310.17549-2308.13261.

Emergent dynamics of cosmic inhomogeneities

Mean-field dynamics

► 2 mean-field eqs. for 3 variables
$$(\delta \Phi, \delta \Psi, \delta \Xi)$$
:
 $\langle \delta S / \delta \hat{\varphi}^{\dagger}_{+} \rangle_{\wedge} = 0 = \langle \delta S / \delta \hat{\varphi}^{\dagger}_{-} \rangle_{\wedge}$

Late times and single (spacelike) rep. label.

Physics captured by rel. localized averages:

$$\langle \hat{\mathcal{O}}_{\mathsf{GFT}} \rangle_{\Delta} = \bar{\mathcal{O}}_{\mathsf{GFT}}(x^0) + \delta \mathcal{O}_{\mathsf{GFT}}(x^0, \mathbf{x}) \,.$$

Classical limit fixes dynamical freedom.

Classical dynamics with trans-Planckian QG effects

- Scalar (isotropic) perturbations dynamics from dynamics of QG correlations (δΦ, δΨ, δΞ).
- E.g.: matter $\delta \phi_{GFT}$ and "curvature-like" $\tilde{\mathcal{R}}$:

$$\begin{split} \delta \phi_{\mathsf{GFT}}^{\prime\prime} + k^2 \mathbf{a}^4 \delta \phi_{\mathsf{GFT}} &= \Big(\frac{a^2 k}{M_{\mathsf{Pl}}}\Big) j_{\phi}[\bar{\phi}] \,, \\ \tilde{\mathcal{R}}_{\mathsf{GFT}}^{\prime\prime} + k^2 \mathbf{a}^4 \tilde{\mathcal{R}}_{\mathsf{GFT}} &= \Big(\frac{a^2 k}{M_{\mathsf{Pl}}}\Big) j_{\bar{\mathcal{R}}}[\bar{\phi}] \,, \end{split}$$

Remarkable agreement with GR at larger scales.

Top: $\tilde{\mathcal{R}}_{GFT}$ (blue) and $\tilde{\mathcal{R}}_{GR}$ (dashed red) for $k/M_{Pl} = 10^2$. Bottom: their difference $\Delta \tilde{\mathcal{R}}$.

Jercher, LM, Pithis 2310.17549-2308.13261.

Luca Marchetti

E.o.m.

- - Identify equivalent tensor models.
 - Define and apply a relational RG scheme.
- - Spin foam TNR and refinement limit.
 - LQG-Spin foam-GFT map in HK model.
 - Compare LQG&GFT averaged dynamics.
- Cosmic acceleration from QG:
 - ▲ Slow-roll inflation from GET interactions.
 - Early dark energy? H₀ tension?
 - Constraints on GET models?

- Background independent theories.
 - Boundaries, QRFs and edge-modes.
 - Relational RG scheme:
 - Relational scale in asymptotic safety.
 - Relational observables in GFT using POVMs.
- OG and cosmological perturbations:
 - A Phenom, implementation of QG effects on SCM; comparison with observations.

Cosmology

- Full cosmological perturbation theory from GETs: more observables, realistic matter, primordial power spectrum.
- Near-bounce cosmic dynamics:
 - Mismatch of super-horizon dynamics with MG.
 - Suppression/enhancement of chaotic behavior?

Backup

Specifics of GFT models

$$\begin{split} S &= \sum_{\{j_a\}, \{j'_a\}, \{m_a\}, \{m'_a\}, \iota, \iota'} \bar{\varphi}_{\{m_a\}}^{\{j_a\}\iota} \varphi_{\{m'_a\}}^{\{j'_a\}\iota'} \mathcal{K}_{\{m_a\}}^{\{j_a\}, \{j'_a\}, \iota'} + V_5 ,\\ V_5 &= \frac{1}{5} \sum_{\{j_a\}, \{m_a\}, \{\iota_b\}} \varphi_{m_1 m_2 m_3 m_4}^{j_1 j_2 j_3 j_4 \iota_1} \varphi_{-m_4 m_5 m_6 m_7}^{j_1 j_3 j_6 j_4 \iota_3} \varphi_{-m_7 - m_3 m_8 m_9}^{j_9 j_6 j_2 j_1 0 \iota_4} \varphi_{-m_1 0}^{j_1 0 j_8 j_5 j_1 \iota_5} \\ &\times \prod_{c=1}^{10} (-1)^{j_c - m_c} \mathcal{V}_5(j_1, \ldots, j_{10}; \iota_1, \ldots, \iota_5) , & a = 1, \ldots, 4 \\ &b = 1, \ldots, 5 \\ \mathcal{V}_5(\{j_c\}, \{\iota_b\}) &= \sum_{\{n_A\}} \int \left[\prod_A d\rho_A(n_A^2 + \rho_A^2) \right] \left[\bigotimes_b f_{\{n_A\}\{\rho_A\}}^{\iota_b}(\{j_a\}) \right] \{15j\}_{\mathrm{SL}(2,\mathbb{C})} , \end{split}$$

where f maps $SL(2, \mathbb{C})$ data into SU(2) ones by imposing the constraints n = 2j and $\rho = 2j\gamma$.

Extended BC model

$$\begin{split} S &= \left[\prod_{i} \int d\rho_{i} \, 4\rho_{i}^{2} \sum_{j_{i}m_{i}}\right] \bar{\varphi}_{j_{i}m_{i}}^{\rho_{i}} \varphi_{j_{i}m_{i}}^{\rho_{i}} + \frac{\lambda}{5} \left[\prod_{a=1}^{10} \int d\rho_{a} \, 4\rho_{a}^{2} \sum_{j_{a}m_{a}}\right] \left[\prod_{a=1}^{10} (-1)^{-j_{a}-m_{a}}\right] \{10\rho\}_{BC} \\ &\times \varphi_{j_{1}m_{1}j_{2}m_{2}j_{3}m_{3}i_{4}m_{4}}^{\rho_{1}\rho_{2}\rho_{2}\rho_{6}\rho_{7}} \varphi_{j_{1}m_{7}j_{7}m_{7}j_{7}-m_{7}j_{3}-m_{3}j_{8}m_{8}j_{9}m_{9}} \\ &\times \varphi_{j_{9}-m_{9}j_{6}-m_{6}j_{2}-m_{2}j_{10}m_{10}}^{\rho_{1}0\rho_{3}\rho_{5}\rho_{1}} \varphi_{j_{1}0-m_{10}j_{8}-m_{8}j_{5}-m_{5}j_{1}-m_{1}} + \text{c.c.} \end{split}$$

Engle, Livine, Pereira, Rovelli 0711.0146; Gielen, Oriti, Sindoni 1311.1238; Jercher, Oriti, Pithis 2112.00091

Luca Marchetti

Spatial relational homogeneity:

 σ depends on a MCMF "clock" scalar field χ^0

LM, Oriti 2008.02774 ; LM, Oriti 2010.09700.

Luca Marchetti

Spatial relational homogeneity:

 σ depends on a MCMF "clock" scalar field χ^0

Observables

Number, volume (determined e.g. by the mapping with LQG) and matter operators $(notation: (\cdot, \cdot) = \int d\chi^0 dg_a)$:

$$\begin{split} \hat{\boldsymbol{\chi}}^{0} &= \left(\hat{\varphi}^{\dagger}, \chi^{0} \hat{\varphi} \right) & \hat{\boldsymbol{V}} &= \left(\hat{\varphi}^{\dagger}, \boldsymbol{V} [\hat{\varphi}] \right) \\ \hat{\boldsymbol{\Pi}}^{0} &= -i (\hat{\varphi}^{\dagger}, \partial_{0} \hat{\varphi}) & \hat{\boldsymbol{N}} &= \left(\hat{\varphi}^{\dagger}, \hat{\varphi} \right) \end{split}$$

LM, Oriti 2008.02774 ; LM, Oriti 2010.09700.

Luca Marchetti

Spatial relational homogeneity:

 σ depends on a MCMF "clock" scalar field $\chi^{\rm 0}$

Observables

Number, volume (determined e.g. by the mapping with $\langle \hat{O} \rangle_{\sigma_{\chi^0}} = O[\tilde{\sigma}]|_{\chi^0 = x^0}$: functionals of LQG) and matter operators (notation: $(\cdot, \cdot) = \int d\chi^0 dg_a$): $\tilde{\sigma}$ localized at x^0

$$\begin{split} \hat{X}^{0} &= \left(\hat{\varphi}^{\dagger}, \chi^{0} \hat{\varphi}\right) & \hat{V} &= \left(\hat{\varphi}^{\dagger}, V[\hat{\varphi}]\right) \\ \hat{\Pi}^{0} &= -i(\hat{\varphi}^{\dagger}, \partial_{0}\hat{\varphi}) & \hat{N} &= \left(\hat{\varphi}^{\dagger}, \hat{\varphi}\right) & \text{wavefunction} & V &\equiv \left\langle\hat{V}\right\rangle_{\sigma_{X^{0}}} &= \sum_{j} |V_{j}|\tilde{\sigma}_{j}|^{2} (x^{0}) \\ & N &\equiv \left\langle\hat{N}\right\rangle_{\sigma_{X^{0}}} &= \sum_{j} |\tilde{\sigma}_{j}|^{2} (x^{0}) \end{split}$$

LM, Oriti 2008.02774 ; LM, Oriti 2010.09700.

Luca Marchetti

Spatial relational homogeneity:

 σ depends on a MCMF "clock" scalar field χ^0

Observables

Relationality

Number, volume (determined e.g. by the mapping with $\langle \hat{O} \rangle_{\sigma_{\chi^0}} = O[\tilde{\sigma}]|_{\chi^0 = x^0}$: functionals of LQG) and matter operators (notation: $(\cdot, \cdot) = \int d\chi^0 dg_{\sigma_{\chi^0}}$ $\tilde{\sigma}$ localized at x^0

$$\hat{X}^{0} = \left(\hat{\varphi}^{\dagger}, \chi^{0} \hat{\varphi}\right) \qquad \hat{V} = \left(\hat{\varphi}^{\dagger}, V[\hat{\varphi}]\right) \qquad \underset{\text{wavefunction}}{\text{wavefunction}} V \equiv \left\langle\hat{V}\right\rangle_{\sigma_{\chi^{0}}} = \sum_{j} V_{j} |\tilde{\sigma}_{j}|^{2} (x^{0})$$

$$\hat{\Pi}^{0} = -i(\hat{\varphi}^{\dagger}, \partial_{0} \hat{\varphi}) \qquad \hat{N} = \left(\hat{\varphi}^{\dagger}, \hat{\varphi}\right) \qquad \underset{\text{isotropy}}{\text{isotropy}} N \equiv \left\langle\hat{N}\right\rangle_{\sigma_{\chi^{0}}} = \sum_{j} |\tilde{\sigma}_{j}|^{2} (x^{0})$$

 $\begin{aligned} & \frac{\text{Clock expectation values}}{\text{For large } N, x^0 \text{ has a clear physical meaning:}} \\ & \langle \hat{\chi}^0 \rangle_{\sigma_{\chi^0}} \equiv \langle \hat{X}^0 \rangle_{\sigma_{\chi^0}} / N \qquad (intensive) \\ & = x^0 \left(1 + \delta X(x^0) / N(x^0) \right) \\ & \langle \hat{\Pi}^0 \rangle_{\sigma_{\chi^0}} = \langle \hat{H}_{\sigma} \rangle_{\sigma_{\chi^0}} \left(1 + \text{const.} / N(x^0) \right) \end{aligned}$

Clock variances

For large N, clock fluctuations scale as N²:

$$\Delta_{\sigma_{\chi^0}}^2 \chi^0 < \frac{1}{N} \left(1 + \frac{\epsilon}{2(x^0)^2} \frac{1}{(1 + \delta X/N)^2} \right)$$

$$\Delta_{\sigma_{\chi^0}}^2 \Pi^0 = \Delta_{\sigma_{\chi^0}}^2 H_\sigma \left(1 + \text{const.}/N(x^0) \right)$$

$$\Delta_{\sigma_{\chi^0}}^2 H_\sigma = \Delta_{\sigma_{\chi^0}}^2 N = N^{-1}(x^0).$$

LM, Oriti 2008.02774 ; LM, Oriti 2010.09700

Luca Marchetti

Quantum Mechanics

Clock POVMs

There cannot exist a self-adjoint (monotonic) \hat{T} canonically conjugate to a bounded \hat{H}_{C} .

LM, Oriti, Wilson-Ewing (in progress).

Luca Marchetti

Clock POVMs

There cannot exist a self-adjoint (monotonic) \hat{T} canonically conjugate to a bounded \hat{H}_{C} .

- A POVM $\hat{E}_{\mathcal{T}}: \mathcal{B}(G)
 ightarrow \mathcal{L}_B(\mathcal{H})$ satisfies
- Positivity: $\hat{E}_T(X) \ge 0 \ \forall X \in \mathcal{B}(G).$
- Normalization: $\hat{E}_T(G) = \hat{\mathbb{I}}_H$.
- σ -additivity: $\hat{E}_T(\cup_i X_i) = \sum_i \hat{E}_T(X_i)$.

LM, Oriti, Wilson-Ewing (in progress).

Luca Marchetti

Clock POVMs

There cannot exist a self-adjoint (monotonic) \hat{T} canonically conjugate to a bounded \hat{H}_{C} .

A POVM $\hat{E}_T : \mathcal{B}(G) \to \mathcal{L}_B(\mathcal{H})$ satisfies

- Positivity: $\hat{E}_{\mathcal{T}}(X) \ge 0 \ \forall X \in \mathcal{B}(G).$
- Normalization: $\hat{E}_T(G) = \hat{\mathbb{I}}_{\mathcal{H}}$.
- σ -additivity: $\hat{E}_T(\cup_i X_i) = \sum_i \hat{E}_T(X_i)$.

A time operator is a covariant POVM \hat{E}_T wrt. \hat{H}_C :

- $\hat{E}_T(X+t) = \hat{U}_C(t)\hat{E}_X\hat{U}_C^{\dagger}(t), \text{ with } \hat{U}_C \equiv e^{-i\hat{H}_C t}.$
- In the simplest case, $\hat{E}_T \propto dt |t\rangle \langle t|$.
- $\hat{T} = \int t \hat{E}_T$ canonically conjugate to \hat{H}_C .

LM, Oriti, Wilson-Ewing (in progress)

Luca Marchetti

Quantum Mechanics

Clock POVMs

There cannot exist a self-adjoint (monotonic) \hat{T} canonically conjugate to a bounded \hat{H}_{C} .

A POVM $\hat{E}_T : \mathcal{B}(G) \to \mathcal{L}_{\mathcal{B}}(\mathcal{H})$ satisfies

- Positivity: $\hat{E}_T(X) \ge 0 \ \forall X \in \mathcal{B}(G).$
- Normalization: $\hat{E}_T(G) = \hat{\mathbb{I}}_H$.
- σ -additivity: $\hat{E}_T(\cup_i X_i) = \sum_i \hat{E}_T(X_i)$.

- A time operator is a covariant POVM \hat{E}_T wrt. \hat{H}_C :
- $\hat{E}_T(X+t) = \hat{U}_C(t)\hat{E}_X\hat{U}_C^{\dagger}(t)$, with $\hat{U}_C \equiv e^{-i\hat{H}_C t}$.
- In the simplest case, $\hat{E}_T \propto dt |t\rangle \langle t|$.
- $\hat{T} = \int t \hat{E}_T$ canonically conjugate to \hat{H}_C .

$$\hat{\mathcal{E}}_{\chi} = |0\rangle \langle 0| + \mathrm{d}\chi \sum_{n=1}^{\infty} \frac{1}{n!} \int \left[\prod_{i=1}^{n} \mathrm{d}\chi_{i} \,\mathrm{d}\xi_{i}\right] \frac{\sum_{i=1}^{n} \delta(\chi_{i} - \chi)}{n} \left[\prod_{i=1}^{n} \hat{\varphi}^{\dagger}(\chi_{i}, \xi_{i})\right] |0\rangle \langle 0| \left[\prod_{i=1}^{n} \hat{\varphi}(\chi_{i}, \xi_{i})\right]$$

LM, Oriti, Wilson-Ewing (in progress)

Luca Marchetti

Quantum Mechanics

Scalar field clock POVMs

Clock POVMs

There cannot exist a self-adjoint (monotonic) \hat{T} canonically conjugate to a bounded \hat{H}_{C} .

A POVM $\hat{E}_{\mathcal{T}}:\mathcal{B}(\mathcal{G})
ightarrow\mathcal{L}_{\mathcal{B}}(\mathcal{H})$ satisfies

- Positivity: $\hat{E}_T(X) \ge 0 \ \forall X \in \mathcal{B}(G).$
- Normalization: $\hat{E}_T(G) = \hat{\mathbb{I}}_H$.
- σ -additivity: $\hat{E}_T(\cup_i X_i) = \sum_i \hat{E}_T(X_i)$.

Scalar field clock POVMs

A time operator is a covariant POVM \hat{E}_T wrt. \hat{H}_C :

- $\hat{E}_T(X+t) = \hat{U}_C(t)\hat{E}_X\hat{U}_C^{\dagger}(t)$, with $\hat{U}_C \equiv e^{-i\hat{H}_C t}$.
- In the simplest case, $\hat{E}_T \propto dt |t\rangle \langle t|$.
- $\hat{T} = \int t \hat{E}_T$ canonically conjugate to \hat{H}_C .

$$\hat{E}_{\chi} = |0\rangle \langle 0| + \mathrm{d}\chi \sum_{n=1}^{\infty} \frac{1}{n!} \int \left[\prod_{i=1}^{n} \mathrm{d}\chi_{i} \,\mathrm{d}\xi_{i}\right] \frac{\sum_{i=1}^{n} \delta(\chi_{i} - \chi)}{n} \left[\prod_{i=1}^{n} \hat{\varphi}^{\dagger}(\chi_{i}, \xi_{i})\right] |0\rangle \langle 0| \left[\prod_{i=1}^{n} \hat{\varphi}(\chi_{i}, \xi_{i})\right]$$

 $\checkmark \text{ Positive, normalized and } \sigma\text{-additive.} \qquad \checkmark \hat{\Pi}_{\chi}\text{-covariant; } \hat{\chi} = \int \chi \hat{E}_{\chi} = \text{ intensive scalar field.}$

LM, Oriti, Wilson-Ewing (in progress)

Luca Marchetti

Quantum Mechanics

Clock POVMs

There cannot exist a self-adjoint (monotonic) \hat{T} canonically conjugate to a bounded \hat{H}_{C} .

A POVM $\hat{E}_T : \mathcal{B}(G) \to \mathcal{L}_{\mathcal{B}}(\mathcal{H})$ satisfies

- Positivity: $\hat{E}_T(X) \ge 0 \ \forall X \in \mathcal{B}(G).$
- Normalization: $\hat{E}_T(G) = \hat{\mathbb{I}}_H$.
- σ -additivity: $\hat{E}_T(\cup_i X_i) = \sum_i \hat{E}_T(X_i)$.

Scalar field clock POVMs

A time operator is a covariant POVM \hat{E}_T wrt. \hat{H}_C :

- $\hat{E}_T(X+t) = \hat{U}_C(t)\hat{E}_X\hat{U}_C^{\dagger}(t)$, with $\hat{U}_C \equiv e^{-i\hat{H}_C t}$.
- In the simplest case, $\hat{E}_T \propto dt |t\rangle \langle t|$.
- $\hat{T} = \int t \hat{E}_T$ canonically conjugate to \hat{H}_C .

$$\hat{E}_{\chi} = |0\rangle \langle 0| + d\chi \sum_{n=1}^{\infty} \frac{1}{n!} \int \left[\prod_{i=1}^{n} d\chi_{i} d\xi_{i} \right] \frac{\sum_{i=1}^{n} \delta(\chi_{i} - \chi)}{n} \left[\prod_{i=1}^{n} \hat{\varphi}^{\dagger}(\chi_{i}, \xi_{i}) \right] |0\rangle \langle 0| \left[\prod_{i=1}^{n} \hat{\varphi}(\chi_{i}, \xi_{i}) \right]$$

$$\checkmark \text{ Positive, normalized and } \sigma \text{-additive.} \qquad \checkmark \hat{\Pi}_{\chi} \text{-covariant; } \hat{\chi} = \int \chi \hat{E}_{\chi} = \text{ intensive scalar field.}$$

$$\hat{E}_{\chi} \text{ is a POVM} \qquad \qquad \hat{E}_{\chi} \text{ represents a scalar field measurement}$$

LM, Oriti, Wilson-Ewing (in progress)

Luca Marchetti

Quantum Mechanics

Group Field Th

Clock POVMs

There cannot exist a self-adjoint (monotonic) \hat{T} canonically conjugate to a bounded \hat{H}_{C} .

A POVM $\hat{E}_T : \mathcal{B}(G) \to \mathcal{L}_B(\mathcal{H})$ satisfies

- Positivity: $\hat{E}_T(X) \ge 0 \ \forall X \in \mathcal{B}(G).$
- Normalization: $\hat{E}_T(G) = \hat{\mathbb{I}}_H$.
- σ -additivity: $\hat{E}_T(\cup_i X_i) = \sum_i \hat{E}_T(X_i)$.

Scalar field clock POVMs

A time operator is a covariant POVM \hat{E}_T wrt. \hat{H}_C :

$$\hat{E}_T(X+t) = \hat{U}_C(t)\hat{E}_X\hat{U}_C^{\dagger}(t), \text{ with } \hat{U}_C \equiv e^{-i\hat{H}_C t}.$$

- In the simplest case, $\hat{E}_T \propto dt |t\rangle \langle t|$.
- $\hat{T} = \int t \hat{E}_T$ canonically conjugate to \hat{H}_C .

$$\hat{E}_{\chi} = |0\rangle \langle 0| + d\chi \sum_{n=1}^{\infty} \frac{1}{n!} \int \left[\prod_{i=1}^{n} d\chi_{i} d\xi_{i}\right] \frac{\sum_{i=1}^{n} \delta(\chi_{i} - \chi)}{n} \left[\prod_{i=1}^{n} \hat{\varphi}^{\dagger}(\chi_{i}, \xi_{i})\right] |0\rangle \langle 0| \left[\prod_{i=1}^{n} \hat{\varphi}(\chi_{i}, \xi_{i})\right]$$

$$\checkmark \text{ Positive, normalized and } \sigma\text{-additive.} \qquad \land \hat{\Pi}_{\chi}\text{-covariant; } \hat{\chi} = \int \chi \hat{E}_{\chi} = \text{ intensive scalar field.}$$

$$\hat{E}_{\chi} \text{ is a POVM} \qquad \qquad \hat{E}_{\chi} \text{ represents a scalar field measurement}$$
Relational observables

$$P.W.\text{-like: } \langle \hat{\Xi}_{\chi} \rangle_{\psi} \propto \langle \{ \hat{\Xi}, \hat{E}_{\chi} \} \rangle_{\psi} \qquad \qquad \text{Is it a sensible definition? } \hat{E}_{\chi} \text{ is not a projector!}$$

$$\widehat{\square} \text{ Compare with previous results when } |\psi\rangle = |\sigma\rangle!$$

LM, Oriti, Wilson-Ewing (in progress).

Luca Marchetti

Quantum Mechanics