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Introduction to GFTs



Group Field Theory and simplicial gravity
D
efi

n
it
io
n

Group Field Theories: theories of

a field φ : G r → C defined on

r copies of a group manifold G .

r is the dimension of the “spacetime to be”

(r = 4) and G is the local gauge group of gravity,

G = SL(2,C) or, for some models, G = SU(2).

A
ct
io
n

S[φ, φ̄] =

∫
dgaφ̄(ga)K[φ](ga) +

∑
γ

λγ

nγ
TrVγ [φ] + c.c. .

▶ Interaction terms are combinatorially non-local.

▶ Field arguments convoluted pairwise following the combinatorial

pattern dictated by the graph γ:

TrVγ [φ] =
∫ nγ∏

i=1

dga
∏

(a,i ;b,j)

Vγ(g (i)
a , g

(j)
b )

nγ∏
i=1

φ(g (i)
a ) .

g′4g′3g′2g′1

g1 g2 g3 g4

K y 7
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g′6

g′2
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g′8
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g3
g4

g′4
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g7

g′7
g′3

g′8
g9

V5

P
ar
ti
ti
o
n
fu
n
ct
io
n

Z [φ, φ̄] =
∑
Γ

wΓ({λγ})AΓ

= complete spin foam model.

▶ Γ = stranded diagrams dual to r -dimensional cellular complexes of arbitrary topology.

▶ Amplitudes AΓ = sums over group theoretic data associated to the cellular complex.

▶ K and Vγ chosen to match the desired spin foam model.

Oriti 1110.5606; Reisenberger, Rovelli 0002083; Freidel 0505016; Baratin, Oriti 1002.4723; Finocchiaro, Oriti 1812.03550.
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Group Field Theory and Loop Quantum Gravity
F
u
n
d
a
m
en

ta
l
q
u
a
n
ta

(ciaoOne-particle Hilbert space(

The one-particle Hilbert space is Htetra ⊂ ⊗4
a=1H∆a (subset defined by the imposition of constraints)

Lie algebra (metric)

H∆a = L2(g)

Lie group (connection)

H∆a = L2(G)

Representation space

H∆a =
⊕

Ja
HJa

(ciaoConstraints(

Geometricity constraints (appropriately encoded in K and Vγ) allow for a

r − 1-simplicial interpretation of the fundamental quanta:

Closure Simplicity∑
a Ba = 0

(faces of the tetrahedron close).

▶ X · (B − γ ⋆ B)a = 0 (EPRL);

▶ X · Ba = 0 (BC).
BgB4Bg

B1

BgB2Bg

B3

•

yL
Q
G
y

▶ Impose simplicity and reduce to G = SU(2).

▶ Impose closure (gauge invariance).

Htetra =
⊕

j⃗ Inv
[⊗4

a=1Hja

]
= open spin-network vertex space

yNon-comm.y

FT

Peter-Weyl

Theorem

Finocchiaro, Oriti 1812.03550; Baez, Barrett 9903060; Baratin, Oriti 1002.4723; Gielen, Oriti 1004.5371; Oriti 1310.7786.
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The Group Field Theory Fock space

Tetrahedron wavefunction

φ(g1, . . . , g4)

(subject to constraints)

GFT field operator

φ̂(g1, . . . , g4)

(subject to constraints)

G
F
T

F
o
ck

sp
a
ce FGFT =

∞⊕
V=0

sym
[
H(1)

tetra ⊗H
(2)
tetra ⊗ . . .H

(V )
tetra

]
▶ FGFT generated by action of φ̂†(ga) on |0⟩, with [φ̂(ga), φ̂

†(g ′
a )] = IG (ga, g ′

a ).

▶ HΓ ⊂ FGFT, HΓ space of states associated to connected simplicial complexes Γ.

▶ Generic states do not correspond to connected simplicial lattices nor classical simplicial geometries.

▶ Similar to HLQG but also different: no continuum intuition, orthogonality wrt nodes, not graphs.

O
p
er
a
to
rs Volume operator V̂ =

∫
dg (1)

a dg (2)
a V (g (1)

a , g (2)
a )φ̂†(g (1)

a )φ̂(g (2)
a ) =

∑
ja,ma,ι

Vja,ιφ̂
†
ja,ma,ι

φ̂ja,ma,ι.

▶ Generic second quantization prescription to build a m + n-body operator: sandwich matrix

elements between spin-network states between m powers of φ̂† and n powers of φ̂.

Many-body

Theory

Oriti 1310.7786; Oriti 1408.7112; Sahlman, Sherif 2302.03612.
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Group Field Theory and matter: scalar fields

Group Field Theories: theories of a field

φ : G d → C defined on the product G d .

r is the dimension of the “spacetime to be” (r = 4)

and G is the local gauge group of gravity,

G = SL(2,C) or, for some models, G = SU(2).

ciao

ciao Kinematicsy

Quanta are r − 1-simplices decorated with quantum geometric data:

▶ Geometricity constraints imposed analogously as before.

▶ Scalar field discretized on each d-simplex: each

d − 1-simplex composing it carries values χ ∈ Rdl .

ciao Dynamics

SGFT obtained by comparing ZGFT with simplicial gravity path integral.

▶ Geometric data enter the action in a non-local and

combinatorial fashion.

▶ Scalar field data are local in interactions.

▶ For minimally coupled, free, massless scalars:

K(ga, gb ;χα, χα′) = K(ga, gb ; (χα − χα′)2)

V5(g (1)
a , . . . , g (5)

a ,χ) = V5(g (1)
a , . . . , g (5)

a )

Htetra =

Bgj4Bg

j1

Bgj2Bg

j3
•

Li, Oriti, Zhang 1701.08719; Oriti 0912.2441; Gielen, Oriti 1311.1238; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Sindoni 1602.08104; . . .
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Mean-field approximation in GFT
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Mean-field

Fluctuations Conclusions

▶ Mass m2≡µ; interactions λφ4.

▶ Two different phases:

δS

δφ
= 0 :

{
φ0 = 0 , µ > 0 ,

φ0 ̸= 0 , µ < 0 .

▶ Gaussian approx.: φ=φ0+δφ.

▶ Correlations: C = ⟨δφ2⟩.
▶ Typical correlation scale ξ2:

ξ
2 →∞ as µ→ 0 .

▶ Mean-field valid only if

Q =
∫
Ωξ

C/
∫
Ωξ
φ2

0 ≪ 1

Q ≪ 1 ←→ d ≥ dc = 4

T
o
y
G
F
T ▶ Rank r , G =RdG →GL=T

dG
L .

▶ L→∞, µ→0 not commuting.

▶ Non-local, generic interactions.

▶ Effective mass bj =µ[1−X (j )].
▶ C expands in zero modes.

▶ Small ξ if µ→0 before L→∞.

Same as FRG

d = dG (r − s0) ,

dc = 2nγ/(nγ−2) .

R
ea

lis
ti
c
G
F
T

▶ Matter (scalars): local Gl=Rdl .

▶ BC: G =SL(2,C)+constraints.

▶ 0 ≤ η < L & Wick rotation.
Analogous to toy GFT.

▶ d = dl + dg (r − s0).

▶ d = d(ξ) −→
ξ→∞

∞!

▶ Flat limit as above.

Universal feature

Mean-field theory is always a good description of the phase transition!

melonic

c

s0 = 1,

nγ =4
X (j ) = 4

(∏
c

δjc ,0 +
∏
b ̸=c

δjb,0 + δjc ,0
)

LM, Oriti, Pithis, Thürigen 2211.12768-2209.04297-2110.15336.
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▶ Typical correlation scale ξ2:

ξ
2 →∞ as µ→ 0 .

▶ Mean-field valid only if

Q =
∫
Ωξ

C/
∫
Ωξ
φ2

0 ≪ 1

Q ≪ 1 ←→ d ≥ dc = 4

T
o
y
G
F
T ▶ Rank r , G =RdG →GL=T

dG
L .

▶ L→∞, µ→0 not commuting.

▶ Non-local, generic interactions.

▶ Effective mass bj =µ[1−X (j )].
▶ C expands in zero modes.

▶ Small ξ if µ→0 before L→∞.

Same as FRG

d = dG (r − s0) ,

dc = 2nγ/(nγ−2) .

R
ea

lis
ti
c
G
F
T

▶ Matter (scalars): local Gl=Rdl .

▶ BC: G =SL(2,C)+constraints.

▶ 0 ≤ η < L & Wick rotation.
Analogous to toy GFT.

▶ d = dl + dg (r − s0).

▶ d = d(ξ) −→
ξ→∞

∞!

▶ Flat limit as above.

Universal feature

Mean-field theory is always a good description of the phase transition!

melonic

c

s0 = 1,

nγ =4
X (j ) = 4

(∏
c

δjc ,0 +
∏
b ̸=c

δjb,0 + δjc ,0
)
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The localization problem



Relational strategy and emergent quantum gravity theories

Background

independence
Problem of

localization
Relational strategy

Quite well understood from a classical perspective, less from a quantum perspective.

Microscopic pre-geo Macroscopic proto-geo

▶ Fundamental d.o.f. are weakly related to

spacetime quantities;

▶ Set of collective

observables;

▶ The latter expected to emerge from the

former when a continuum limit is taken.

▶ Coarse grained states or

probability distributions.

The quantities whose localization we want to describe relationally are the

result of a coarse-graining of some fundamental d.o.f.

Deeply intertwined with continuum limit

problem!
Effective approaches!

LM, Oriti 2008.02774; Rovelli Class. Quantum Grav. 8 297; Dittrich 0507106; Goeller, Höhn, Kirklin 2206.01193; . . .
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Emergent effective relational strategy

P
E
R
S
P
E
C
T
IV

E
-D

E
P
E
N
D
E
N
TP

E
R
S
P
E
C
T
IV

E
-N

E
U
T
R
A
L

PROTO-GEOMETRIC

PRE-GEOMETRIC

Effective
Relational
Strategy

Basic principles

Emergence Relational strategy in terms of

collective observables and states.

Effectiveness Averaged relational localization.

Internal frame not too quantum.

Concrete example: scalar field clock

Emergence

▶ Identify (collective) states |Ψ⟩ admitting a

continuum proto-geometric interpretation.
▶ Identify a set of collective observables:

Ôa χ̂ Π̂ N̂

Geometric
observables

Scalar field and
its momentum

Number
of quanta

⟨·⟩Ψ ⟨·⟩Ψ ⟨·⟩Ψ

Effectivness

▶ It exists a “Hamiltonian” Ĥ such that

i
d

d ⟨χ̂⟩Ψ
⟨Ôa⟩Ψ = ⟨[Ĥ, Ôa]⟩Ψ ,

and whose moments coincide with those of Π̂.
▶ Relative fluctuations of χ̂ on |Ψ⟩ should be≪1.

∆2
χ≪ 1 , ∆2

χ ∼ ⟨N̂⟩−1

Ψ .

LM, Oriti 2008.02774; Bojowald, Hoehn, Tsobanjan 1011.3040; Bojowald, Tsobanjan 0906.1772;
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Relationality

(effective)

Microscopic

description

Group Field Theory

Coarse-graining

(mean-field)

Choice of

collective states

Macroscopic

description
Cosmology



Coarse-graining

(mean-field)

Microscopic

description

Group Field Theory

Relationality

(effective)

Choice of

collective states

Macroscopic

description
Cosmology



Quantum gravity coherent states
yC

o
lle

ct
iv
e
st
a
te
sy (ciaoGFT coherent states

▶ From the GFT perspective, continuum geometries are associated to large number of quanta.

▶ The simplest states that can accommodate infinite number of quanta are coherent states:

|σ⟩ = Nσ exp

[∫
d
dlχ

∫
dga σ(ga, χ

α)φ̂†(ga, χ
α)

]
|0⟩ .

C
o
ar
se
-g
ra
in
in
g

(ciaoMean-field approximation

▶ When interactions are small (certainly satisfied in an appropriate regime) the dynamics of σ is:〈
δSGFT[φ̂, φ̂

†]

δφ̂(gI , xα)

〉
σ

=

∫
dha

∫
dχK(ga, ha, (xα − χα)2)σ(ha, χα) + λ

δV [φ, φ∗]

δφ∗(ga, xα)

∣∣∣∣
φ=σ

= 0 .

▶ Non-perturbative: equivalent to a mean-field (saddle-point) approximation of Z .

L
o
ca

liz
a
ti
o
n

Relational peaking(

▶ Relational localization implemented at an effective level on observable averages. E.g., χµ-frame:

σx = (fixed peaking function ηx )× (dynamically determined reduced wavefunction σ̃) ,

O(x) ≡ ⟨Ô⟩σx ≃ O[σ̃]|χµ=xµ

⟨χ̂µ⟩σx ≃ xµ
e.g.

N̂ =

∫
dga d

4
χ
µ
φ̂

†(ga, χ
µ)φ̂(ga, χ

µ)

N(x) =

∫
dga |σ̃(ga, xµ)|2

LM, Oriti 2008.02774-2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Oriti, Sindoni 1311.1238.
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O(x) ≡ ⟨Ô⟩σx ≃ O[σ̃]|χµ=xµ

⟨χ̂µ⟩σx ≃ xµ
e.g.

N̂ =

∫
dga d

4
χ
µ
φ̂

†(ga, χ
µ)φ̂(ga, χ

µ)

N(x) =

∫
dga |σ̃(ga, xµ)|2

LM, Oriti 2008.02774-2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Oriti, Sindoni 1311.1238.

Luca Marchetti Continuum Physics from GFTs 9



Quantum gravity coherent states
yC

o
lle

ct
iv
e
st
a
te
sy (ciaoGFT coherent states

▶ From the GFT perspective, continuum geometries are associated to large number of quanta.

▶ The simplest states that can accommodate infinite number of quanta are coherent states:

|σ⟩ = Nσ exp

[∫
d
dlχ

∫
dga σ(ga, χ

α)φ̂†(ga, χ
α)

]
|0⟩ .

C
o
ar
se
-g
ra
in
in
g

(ciaoMean-field approximation

▶ When interactions are small (certainly satisfied in an appropriate regime) the dynamics of σ is:〈
δSGFT[φ̂, φ̂

†]

δφ̂(gI , xα)

〉
σ

=

∫
dha

∫
dχK(ga, ha, (xα − χα)2)σ(ha, χα) + λ

δV [φ, φ∗]

δφ∗(ga, xα)

∣∣∣∣
φ=σ

= 0 .

▶ Non-perturbative: equivalent to a mean-field (saddle-point) approximation of Z .

L
o
ca

liz
a
ti
o
n

Relational peaking(

▶ Relational localization implemented at an effective level on observable averages. E.g., χµ-frame:

σx = (fixed peaking function ηx )× (dynamically determined reduced wavefunction σ̃) ,
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description

Group Field Theory

Coarse-graining

(mean-field)

Collective states
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description

Based on averages of

collective observables

Cosmology



FLRW sector



Effective FLRW cosmological dynamics
E
ff
ec
ti
ve

d
yn

a
m
ic
s

(ciaoMean-field approximation

▶ Homogeneity: σ̃ depends only on MCMF clock χ0.

▶ Isotropy: σ̃υ ≡ ρυe iθυ (υEPRL ∈ N/2, υBC ∈ R).
▶ Mesoscopic regime: negligible interactions.

0 = σ̃
′′
υ − 2iπ̃0σ̃

′
υ − E 2

υσ̃,

V (x0) =
∑∫

υ

Vυ|σ̃υ|2(x0).

Effective volume dynamics(
V ′

3V

)2

=

(
2
∑
υ Vυρυsgn(ρ

′
υ)
√
Eυ − Q2

υ/ρ
2
υ + µ2

υρ
2
υ

3
∑
υ Vυρ2υ

)2

,
V ′′

V
=

2
∑
υVυ

[
Eυ + 2µ2

υρ
2
υ

]∑
υ Vυρ2υ

LM, Oriti 2008.02774-2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Oriti, Pithis 2112.00091.
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V
=

2
∑
υVυ

[
Eυ + 2µ2

υρ
2
υ

]∑
υ Vυρ2υ

C
la
ss
ic
a
l
lim

it

(ciaoLarge number of quanta (large volume and late times) (

Volume quantum fluctuations under control.

▶ If µ2
υ is mildly dependent on υ (or one υo is

dominating) and equal to 3πG

(V ′
/3V )2 ≃ 4πG/3 flat FLRW

Classical limit seems universal!

x0 = ⟨χ̂0⟩σx0
, clock quantum fluct. ≃ 0.

⟨Π̂0⟩σx0
= ⟨Ĥσ⟩σx0

(higher moments ≃ 0).

Effective relational framework reliable!
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yQ
u
a
n
tu
m

b
o
u
n
ce
y

Smaller number of quanta (smaller volume and early times)

▶ For a large range of initial conditions (at least

one Qυ ̸= 0 or one Eυ < 0)

Singularity res. into quantum bounce!

▶ x0 may not coincide with ⟨χ̂0⟩σx0
anymore!

▶ Clock quantum fluctuations may be large!

▶ ⟨Π̂0⟩σx0
̸= ⟨Ĥσ⟩σx0

(higher moments ̸= 0).

Effective rel. framework may break down!
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A state-agnostic approach



Effective approach for quantum systems
g
Q
u
a
n
tu
m

sy
st
em

g

Construction of the effective system

Relational description

Step 1: definition of the quantum phase space

▶ Describe the system with ⟨Âi ⟩ and moments.

▶ Inherited Poisson structure: {⟨·⟩ , ⟨·⟩}=(iℏ)−1⟨[·, ·]⟩
Step 2: definition of the constraints

▶ ⟨Ĉ⟩ = 0 and ⟨(p̂ol− ⟨p̂ol⟩)Ĉ⟩ = 0 eff. constraints;

Step 3: truncation scheme (e.g. semiclassicality)

Step 1: choose a clock T̂ ([T̂ , P̂] closes)

Step 2: gauge fixing

▶ 1st order: ∆(TAi )=0, Ai ∈A\{P̂}.
Step 3: relational rewriting

▶ Write evolution of the remaining

variables wrt. T (classical clock).

How can this framework be generalized to a field theory context?

Infinitely many algebra generators. Infinitely many quantum constraints.

Additional truncation scheme

Motivations Coarse-graining truncation

▶ Interest in a coarse grained system

characterized by a small number of

macroscopic (1-body) observables.

▶ Expected to be the case for cosmology.

▶ When the e.o.m. are linear, consider an

integrated 1-body quantum constraint.

▶ Algebra generated by minimal set of physically

relevant operators (including constraint).

LM, Gielen, Oriti, Polaczek 2110.11176; Bojowald, Sandhoefer, Skirzewski, Tsobanjan 0804.3365; Bojowald Tsobanjan 0906.1772.
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A state agnostic approach: application to GFT

How can this framework be generalized to a field theory context?

Infinitely many algebra generators. Infinitely many quantum constraints.

Additional truncation scheme

Motivations Coarse-graining truncation

▶ Interest in a coarse grained system

characterized by a small number of

macroscopic (1-body) observables.

▶ Expected to be the case for cosmology.

▶ When the e.o.m. are linear, consider an

integrated 1-body quantum constraint.

▶ Algebra generated by minimal set of physically

relevant operators (including constraint).

S
et
ti
n
g

GFT with MCMF scalar field

▶ Free e.o.m.: Dφ ≡ (m2 + ℏ2∆g + λℏ2
∂
2
χ)φ = 0.

▶ Quantum constr. Ĉ =
∫
φ̂†Dφ̂ = m2N̂ − Λ̂− λΠ̂2.

▶ Generators: χ̂, Π̂, Π̂2, N̂, Λ̂ and K̂ .

▶ K̂ such that [Λ̂, K̂ ] = iℏαK̂ .

g
R
es
u
lt
sg

(ciaoExpectation values and variances

▶ Choose K̂ as clock variable.

▶ Relational evolution of ⟨χ̂⟩ in agreement

with classical cosmology.

▶ Fluctuations are decoupled from expect. values.

▶ If they are small at small ⟨K̂⟩ they stay small

even at large ⟨K̂⟩ (due to a constant ⟨N̂⟩).

LM, Gielen, Oriti, Polaczek 2110.11176.
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Inhomogeneous sector



Scalar perturbations from quantum entanglement
yS

et
ti
n
g
y

(ciaoClassical(

(ciaoQuantum(

▶ 4 MCMF reference fields (χ0
, χ

i ),

▶ 1 MCMF matter field ϕ dominating the

energy-momentum budget and slightly

relationally inhomogeneous wrt.χi .

▶ Quanta with spacelike (+) and timelike (−)
character to causally couple the physical frame.

▶ Geometry from quantum entanglement:

inhomogeneities from QG correlations.

yM
o
d
el
y

Two-sector GFT(

▶ BC model: φ±≡φ(ga,X±,Φ), with Φ=(χµ, ϕ)∈R5 and KGFT = K+ + K−
▶ Since χ0 (χi ) propagates along timelike (spacelike) edges:

K+ independent of χi . K− independent of χ0.

g2

g4

g1g3

Φ

X

•

yC
o
lle

ct
iv
e
st
a
te
sy

(ciaoTwo-body correlations(

|∆⟩ = Nψ exp(σ̂ ⊗ I− + I+ ⊗ τ̂ + δ̂Φ⊗ I− + δ̂Ψ + I+ ⊗ δ̂Ξ) |0⟩

Background Perturbations

▶ σ̂ = (σ, φ̂†
+): spacelike condensate.

▶ τ̂ = (τ, φ̂†
−): timelike condensate.

▶ τ , σ peaked; τ̃ , σ̃ homogeneous.

▶ δ̂Φ=(δΦ, φ̂†
+φ̂

†
+), δ̂Ψ=(δΨ, φ̂†

+φ̂
†
−), δ̂Ξ=(δΞ, φ̂†

−φ̂
†
−).

▶ δΦ, δΨ and δΞ small and relationally inhomogeneous.

▶ Pert.= rel. nearest neighbour 2-body correlations.

notation: (·, ·) =

∫
Ω
dΩ · ×·

Jercher, LM, Pithis 2310.17549-2308.13261; LM, Oriti 2112.12677; Jercher, Oriti, Pithis 2206.15442.
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|∆⟩ = Nψ exp(σ̂ ⊗ I− + I+ ⊗ τ̂ + δ̂Φ⊗ I− + δ̂Ψ + I+ ⊗ δ̂Ξ) |0⟩

Background Perturbations

▶ σ̂ = (σ, φ̂†
+): spacelike condensate.

▶ τ̂ = (τ, φ̂†
−): timelike condensate.

▶ τ , σ peaked; τ̃ , σ̃ homogeneous.

▶ δ̂Φ=(δΦ, φ̂†
+φ̂

†
+), δ̂Ψ=(δΨ, φ̂†

+φ̂
†
−), δ̂Ξ=(δΞ, φ̂†

−φ̂
†
−).

▶ δΦ, δΨ and δΞ small and relationally inhomogeneous.

▶ Pert.= rel. nearest neighbour 2-body correlations.

notation: (·, ·) =

∫
Ω
dΩ · ×·

Jercher, LM, Pithis 2310.17549-2308.13261; LM, Oriti 2112.12677; Jercher, Oriti, Pithis 2206.15442.
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Emergent dynamics of cosmic inhomogeneities
yE

.o
.m

.y

(ciaoMean-field dynamics

▶ 2 mean-field eqs. for 3 variables (δΦ, δΨ, δΞ):

⟨δS/δφ̂†
+⟩∆ = 0 = ⟨δS/δφ̂†

−⟩∆
▶ Late times and single (spacelike) rep. label.

▶ Physics captured by rel. localized averages:

⟨ÔGFT⟩∆ = ŌGFT(x
0) + δOGFT(x

0
, x) .

▶ Classical limit fixes dynamical freedom.

E
ff
ec
ti
ve

d
yn

a
m
ic
s

(ciaoClassical dynamics with trans-Planckian QG effects

▶ Scalar (isotropic) perturbations dynamics from

dynamics of QG correlations (δΦ, δΨ, δΞ).

▶ E.g.: matter δϕGFT and “curvature-like” R̃:

δϕ
′′
GFT + k2a4δϕGFT =

( a2k

Mpl

)
jϕ[ϕ̄] ,

R̃′′
GFT + k2a4R̃GFT =

( a2k

Mpl

)
jR̃[ϕ̄] ,

▶ Trans-Planckian QG corrections to the dynamics

of scalar isotropic perturbations.

✓ Remarkable agreement with GR at larger scales.
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Top: R̃GFT (blue) and R̃GR (dashed red) for

k/MPl = 102. Bottom: their difference ∆R̃.

Jercher, LM, Pithis 2310.17549-2308.13261.
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Relationality

(effective)

Microscopic

description

Group Field Theory

Coarse-graining

(via mean-field)

Collective states

(coherent and

squeezed states)

Macroscopic

description

Based on averages of

collective observables

Cosmology

✓ Singularity resolution and

impact of quantum effects.

✓ Universal classical limit using

different clocks.

✓ Emergence of macro. couplings

from micro. ones.

✓ Causal coupling of physical

reference frame.

✓ Inhomogeneities = quantum

entanglement.

✓ Derivation of modified

perturbations dynamics.

✓ Trans-Planckian QG effects.

✓ Toy models: mean-field results

consistent with FRG.

✓ Lorentzian geometry implies

infinite IR effective dimension.

✓ Mean-field appr. never breaks!

✓ Outline of effective framework.

✓ Implementation via peaking.

✓ State-agnostic implementation.

✓ Interplay between quantum

effects and relationality.

.b
fI
n
h
o
m
o
g
en

ei
ti
es

.b
fB

a
ck
g
ro
u
n
d



Continuum limit Localization
Macroscopic

description

Cosmology

▶ Effective state-agnostic approach:

Extension to gauge theories: quantum

covariant phase space using nPI action.

• Background independent theories.

• Boundaries, QRFs and edge-modes.

▶ Relational RG scheme:

Relational scale in asymptotic safety.

Relational observables in GFT using POVMs.

▶ Construct effective GFT models.

▶ Renormalization of geometric models:

• Identify equivalent tensor models.

• Define and apply a relational RG scheme.

▶ Connect with spin foams and LQG:

• Spin foam TNR and refinement limit.

LQG-Spin foam-GFT map in HK model.

Compare LQG&GFT averaged dynamics.

▶ Cosmic acceleration from QG:

Slow-roll inflation from GFT

interactions.

• Early dark energy? H0 tension?

• Constraints on GFT models?

▶ QG and cosmological perturbations:

Phenom. implementation of QG effects

on SCM; comparison with observations.

• Full cosmological perturbation theory

from GFTs: more observables, realistic

matter, primordial power spectrum.

▶ Near-bounce cosmic dynamics:

Mismatch of super-horizon

dynamics with MG.

• Suppression/enhancement of

chaotic behavior?
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Specifics of GFT models
E
P
R
L
m
o
d
el

S =
∑

{ja},{j′a},{ma},{m′
a},ι,ι′

φ̄
{ja}ι
{ma}φ

{j′a}ι
′

{m′
a}
K{ja}{j′a}ιι

′
{ma}{m′

a}
+ V5 ,

V5 =
1

5

∑
{ja},{ma},{ιb}

φ
j1 j2 j3 j4ι1
m1m2m3m4

φ
j4 j5 j6 j7ι2
−m4m5m6m7

φ
j7 j3 j8 j9ι3
−m7−m3m8m9

φ
j9 j6 j2 j10ι4
−m9−m6−m2m10

φ
j10 j8 j5 j1ι5
−m10−m8−m5−m1

×
10∏
c=1

(−1)jc−mcV5(j1, . . . , j10; ι1, . . . , ι5) ,

V5({jc}, {ιb}) =
∑
{nA}

∫ [∏
A

dρA(n
2
A + ρ

2
A)

][⊗
b

f
ιb
{nA}{ρA}({ja})

]
{15j}SL(2,C) ,

where f maps SL(2,C) data into SU(2) ones by imposing the constraints n = 2j and ρ = 2jγ.

E
xt
en

d
ed

B
C

m
o
d
el

S =

∏
i

∫
dρi 4ρ

2
i

∑
ji mi

 φ̄ρiji mi
φ
ρi
ji mi

+
λ

5

 10∏
a=1

∫
dρa 4ρ

2
a

∑
jama

[ 10∏
a=1

(−1)−ja−ma

]
{10ρ}BC

× φρ1ρ2ρ3ρ4j1m1 j2m2 j3m3 j4m4
φ
ρ4ρ5ρ6ρ7
j4−m4 j5m5 j6m6 j7m7

φ
ρ7ρ3ρ8ρ9
j7−m7 j3−m3 j8m8 j9m9

× φρ9ρ6ρ2ρ10j9−m9 j6−m6 j2−m2 j10m10
φ
ρ10ρ8ρ5ρ1
j10−m10 j8−m8 j5−m5 j1−m1

+ c.c.

a = 1, . . . , 4

b = 1, . . . , 5

c = 1, . . . , 10

Engle, Livine, Pereira, Rovelli 0711.0146; Gielen, Oriti, Sindoni 1311.1238; Jercher, Oriti, Pithis 2112.00091.
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Macroscopic cosmological variables and effective relationality

Spatial relational homogeneity:

σ depends on a MCMF “clock” scalar field χ0

yO
b
se
rv
a
b
le
sy

Number, volume (determined e.g. by the mapping with

LQG) and matter operators (notation: (·, ·) =

∫
dχ

0
dga):

X̂ 0 =
(
φ̂

†
, χ

0
φ̂
)

V̂ = (φ̂†
,V [φ̂])

Π̂
0
= −i(φ̂†

, ∂0φ̂) N̂ = (φ̂†
, φ̂)

⟨Ô⟩σx0
= O[σ̃]|χ0=x0 : functionals of

σ̃ localized at x0

V ≡ ⟨V̂ ⟩σx0
=
∑

j
Vj |σ̃j |2(x0)

N ≡ ⟨N̂⟩σx0
=
∑

j
|σ̃j |2(x0)

R
el
a
ti
o
n
a
lit
y

Clock expectation values Clock variances

For large N, x0 has a clear physical meaning:

⟨χ̂0⟩σx0
≡ ⟨X̂ 0⟩σx0

/N (intensive)

= x0
(
1 + δX (x0)/N(x0)

)
⟨Π̂0⟩σx0

= ⟨Ĥσ⟩σx0

(
1 + const./N(x0)

)

For large N, clock fluctuations scale as N−1:

∆2
σx0
χ
0
<

1

N

(
1 +

ϵ

2(x0)2
1

(1 + δX/N)2

)
∆2
σx0

Π0 = ∆2
σx0

Hσ
(
1 + const./N(x0)

)
∆2
σx0

Hσ = ∆2
σx0

N = N−1(x0) .

wavefunction

isotropy

LM, Oriti 2008.02774 ; LM, Oriti 2010.09700.
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Relational strategy in full GFT
yQ

u
a
n
tu
m

M
ec
h
a
n
ic
sy (ciaoClock POVMs

There cannot exist a self-adjoint (monotonic) T̂ canonically conjugate to a bounded ĤC .

A POVM ÊT : B(G)→ LB (H) satisfies

▶ Positivity: ÊT (X ) ≥ 0 ∀X ∈ B(G).

▶ Normalization: ÊT (G) = ÎH.

▶ σ-additivity: ÊT (∪iXi ) =
∑

i ÊT (Xi ).

A time operator is a covariant POVM ÊT wrt. ĤC :

▶ ÊT (X + t) = ÛC (t)ÊX Û
†
C (t), with ÛC ≡ e−i ĤC t .

▶ In the simplest case, ÊT ∝ dt |t⟩ ⟨t|.
▶ T̂ =

∫
tÊT canonically conjugate to ĤC .

G
ro
u
p
F
ie
ld

T
h
eo

ry

(ciaoScalar field clock POVMs

Êχ = |0⟩ ⟨0|+dχ

∞∑
n=1

1

n!

∫ [ n∏
i=1

dχi dξi

] ∑n
i=1 δ(χi − χ)

n

[
n∏

i=1

φ̂
†(χi , ξi )

]
|0⟩ ⟨0|

[
n∏

i=1

φ̂(χi , ξi )

]

Positive, normalized and σ-additive. Êχ

Êχ is a POVM

Π̂χ-covariant; χ̂ =
∫
χÊχ = intensive scalar field.

Êχ represents a scalar field measurement

(ciaoRelational observables

P.W.-like: ⟨Ξ̂χ⟩ψ ∝ ⟨{Ξ̂, Êχ}⟩ψ
▶ Is it a sensible definition? Êχ is not a projector!

Compare with previous results when |ψ⟩ = |σ⟩!

LM, Oriti, Wilson-Ewing (in progress).
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▶ T̂ =

∫
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▶ In the simplest case, ÊT ∝ dt |t⟩ ⟨t|.
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▶ T̂ =

∫
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Êχ represents a scalar field measurement

(ciaoRelational observables

P.W.-like: ⟨Ξ̂χ⟩ψ ∝ ⟨{Ξ̂, Êχ}⟩ψ
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