

Cosmic Emergence in Quantum Gravity

Luca Marchetti

Cosmology and Quantum Gravity Beyond Spacetime University of Western Ontario, London 11 November 2023

Department of Mathematics and Statistics UNB Fredericton

> Localization problem

Macroscopic description Cosmology

Relationality

The continuum limit problem

The (F)RG perspective

QFT on spacetime

QG theory

- Energy scale defines the flow from IR and UV.
- Only internal "timeless" scales available.

The (F)RG perspective

QFT on spacetime

QG theory

- Energy scale defines the flow from IR and UV.
- Only internal "timeless" scales available.

UV and IR have different meaning in QG!

- Energy scale defines the flow from IR and UV.
- Only internal "timeless" scales available.

UV and IR have different meaning in QG!

- Theory space constrained by symmetries.
- Symmetries of QG models hard to classify.

Little control over QG theory space!

LM, Oriti, Pithis, Thürigen 2211.12768-2209.04297-2110.15336; Oriti 2112.02585, Reuter, Saueressig 2019, Kopietz et al. 2010, Finocchiaro, ...

LM, Oriti, Pithis, Thürigen 2211.12768-2209.04297-2110.15336; Oriti 2112.02585, Reuter, Saueressig 2019, Kopietz et al. 2010, Finocchiaro, ...

LM, Oriti, Pithis, Thürigen 2211.12768-2209.04297-2110.15336; Oriti 2112.02585, Reuter, Saueressig 2019, Kopietz et al. 2010, Finocchiaro, ...

LM, Oriti, Pithis, Thürigen 2211.12768-2209.04297-2110.15336; Oriti 2112.02585, Reuter, Saueressig 2019, Kopietz et al. 2010, Finocchiaro, ...

LM, Oriti, Pithis, Thürigen 2211.12768-2209.04297-2110.15336; Oriti 2112.02585, Reuter, Saueressig 2019, Kopietz et al. 2010, Finocchiaro, ...

LM, Oriti, Pithis, Thürigen 2211.12768-2209.04297-2110.15336; Oriti 2112.02585, Reuter, Saueressig 2019, Kopietz et al. 2010, Finocchiaro, ...

LM, Oriti, Pithis, Thürigen 2211.12768-2209.04297-2110.15336; Oriti 2112.02585, Reuter, Saueressig 2019, Kopietz et al. 2010, Finocchiaro, ...

The localization problem

Quite well understood from a classical perspective, less from a quantum perspective.

Isham 9210011; Rovelli Class. Quantum Grav. 8 297; Dittrich 0507106; Hoehn et al. 1912.00033 and 2007.00580; Tambornino 1109.0740; ...

Quite well understood from a classical perspective, less from a quantum perspective.

- Evolution in \(\tau\) is relational.
- F_{f,T}(τ) is a very complicated function.
- Applications almost only for very simple systems.

Isham 9210011; Rovelli Class. Quantum Grav. 8 297; Dittrich 0507106; Hoehn et al. 1912.00033 and 2007.00580; Tambornino 1109.0740; ...

Quite well understood from a classical perspective, less from a guantum perspective.

- ▶ Take two phase space functions, f and T with $\{T, C_H\} \neq 0$ (T relational clock).
- The relational extension $F_{f,T}(\tau)$ of f encodes the value of f when T reads τ .
- Evolution in τ is relational.
- $F_{f,T}(\tau)$ is a very complicated function.
- Applications almost only for very simple systems. ►

Dirac approach: Quantize first.

- Perspective neutral.
- Poor control of the physical Hilbert space.

Isham 9210011; Rovelli Class, Quantum Grav, 8 297; Dittrich 0507106; Hoehn et al. 1912.00033 and 2007.00580; Tambornino 1109.0740; ...

Quite well understood from a classical perspective, less from a quantum perspective.

Physical localization via relational observables:

- ► Take two phase space functions, f and T with $\{T, C_H\} \neq 0$ (T relational clock).
- The relational extension $F_{f,T}(\tau)$ of f encodes the value of f when T reads τ .
- Evolution in \(\tau\) is relational.
- *F_{f,T}*(τ) is a very complicated function.
- Applications almost only for very simple systems.

Quantum GR

Dirac approach: Quantize first.

- Perspective neutral.
- Poor control of the physical Hilbert space.

Reduced approach: Relationality first.

- No quantum constraint to solve.
- Not perspective neutral. Too complicated to implement in most of the cases.

Isham 9210011; Rovelli Class. Quantum Grav. 8 297; Dittrich 0507106; Hoehn et al. 1912.00033 and 2007.00580; Tambornino 1109.0740; ...

A genuinely new dimension of the problem arises for emergent QG theories.

LM, Oriti 2008.02774; Giulini 0603087; Kuchar Int.J.Mod.Phys.D 20(2011); Isham 9210011; Rovelli Class. Quantum Grav. 8 297;

LM, Oriti 2008.02774; Giulini 0603087; Kuchar Int.J.Mod.Phys.D 20(2011); Isham 9210011; Rovelli Class. Quantum Grav. 8 297;

result of a coarse-graining of some fundamental d.o.f.

LM, Oriti 2008.02774; Giulini 0603087; Kuchar Int.J.Mod.Phys.D 20(2011); Isham 9210011; Rovelli Class. Quantum Grav. 8 297;

LM, Oriti 2008.02774; Giulini 0603087; Kuchar Int.J.Mod.Phys.D 20(2011); Isham 9210011; Rovelli Class. Quantum Grav. 8 297;

The (T)GFT approach to quantum gravity

GFTs are QFTs of atoms of spacetime.

- Take seriously the idea of a microscopic structure of spacetime.
- ► Access to powerful field theoretic methods (Fock space, RG...)!

Oriti 0912.2441; Oriti 1110.5606; Oriti 1408.7112; Krajewski 1210.6257; Oriti 1807.04875; Gielen, Sindoni 1602.08104; ...

The (T)GFT approach to quantum gravity

GFTs are QFTs of atoms of spacetime.

- Take seriously the idea of a microscopic structure of spacetime.
- Access to powerful field theoretic methods (Fock space, RG...)!

Group Field Theory Quanta

- ▶ GFT quanta are atoms of quantum 3-space, i.e. tetrahedra.
- Data associated to a single quantum are field data of a tetrahedron (g_a = gravitational, χ = scalar fields).

Oriti 0912.2441; Oriti 1110.5606; Oriti 1408.7112; Krajewski 1210.6257; Oriti 1807.04875; Gielen, Sindoni 1602.08104; ...

The (T)GFT approach to quantum gravity

GFTs are QFTs of atoms of spacetime.

- Take seriously the idea of a microscopic structure of spacetime.
- Access to powerful field theoretic methods (Fock space, RG...)!

Group Field Theory Quanta

- ► GFT quanta are atoms of quantum 3-space, i.e. tetrahedra.
- Data associated to a single quantum are field data of a tetrahedron (g_a = gravitational, χ = scalar fields).

Group Field Theory Processes

- GFT Feynman diagrams (QG processes) are associated with 4d triangulated (pseudo-)manifolds.
- ► Z_{GFT} = discrete matter-gravity path-integral.

Oriti 0912.2441; Oriti 1110.5606; Oriti 1408.7112; Krajewski 1210.6257; Oriti 1807.04875; Gielen, Sindoni 1602.08104; ...

Quantum gravity coherent states

GFT coherent states

From the GFT perspective, continuum geometries are associated to large number of quanta.

The simplest states that can accommodate infinite number of quanta are coherent states:

$$|\sigma\rangle = \mathcal{N}_{\sigma} \exp\left[\int \mathrm{d}^{d_{l}} \chi \int \mathrm{d}g_{s} \,\sigma(g_{s},\chi^{lpha}) \hat{\varphi}^{\dagger}(g_{s},\chi^{lpha})\right]|0
angle$$

LM, Oriti, Pithis, Thürigen 2211.12768 ; LM, Oriti 2008.02774-2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Oriti, Sindoni 1311.1238.

Quantum gravity coherent states

GFT coherent states

▶ From the GFT perspective, continuum geometries are associated to large number of quanta.

The simplest states that can accommodate infinite number of quanta are coherent states:

$$|\sigma
angle = \mathcal{N}_{\sigma} \exp\left[\int \mathrm{d}^{d_{l}}\chi \int \mathrm{d}g_{a}\,\sigma(g_{a},\chi^{lpha})\hat{arphi}^{\dagger}(g_{a},\chi^{lpha})
ight]|0
angle\,.$$

Mean-field approximation

- $\begin{aligned} \bullet \quad & \text{When interactions are small (certainly satisfied in an appropriate regime) the dynamics of σ is:} \\ & \left\langle \frac{\delta S_{\mathsf{GFT}}[\hat{\varphi}, \hat{\varphi}^{\dagger}]}{\delta \hat{\varphi}(g_l, x^{\alpha})} \right\rangle_{\sigma} = \int \mathrm{d}h_a \int \mathrm{d}\chi \, \mathcal{K}(g_a, h_a, (x^{\alpha} \chi^{\alpha})^2) \sigma(h_a, \chi^{\alpha}) + \lambda \frac{\delta \, V[\varphi, \varphi^*]}{\delta \varphi^*(g_a, x^{\alpha})} \bigg|_{\varphi = \sigma} = \mathbf{0} \,. \end{aligned}$
 - Simplest coarse-graining: equivalent to a mean-field (saddle-point) approximation of Z.

LM, Oriti, Pithis, Thürigen 2211.12768 ; LM, Oriti 2008.02774-2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Oriti, Sindoni 1311.1238.
Quantum gravity coherent states

Localization

GFT coherent states

▶ From the GFT perspective, continuum geometries are associated to large number of quanta.

The simplest states that can accommodate infinite number of quanta are coherent states:

$$|\sigma
angle = \mathcal{N}_{\sigma} \exp\left[\int \mathrm{d}^{d_l}\chi \int \mathrm{d}g_{a}\,\sigma(g_{a},\chi^{lpha})\hat{arphi}^{\dagger}(g_{a},\chi^{lpha})
ight]|0
angle\,.$$

Mean-field approximation

► When interactions are small (certainly satisfied in an appropriate regime) the dynamics of σ is: $\left\langle \frac{\delta S_{GFT}[\hat{\varphi}, \hat{\varphi}^{\dagger}]}{\delta \hat{\varphi}(g_l, x^{\alpha})} \right\rangle_{\sigma} = \int dh_a \int d\chi \, \mathcal{K}(g_a, h_a, (x^{\alpha} - \chi^{\alpha})^2) \sigma(h_a, \chi^{\alpha}) + \lambda \frac{\delta V[\varphi, \varphi^*]}{\delta \varphi^*(g_a, x^{\alpha})} \bigg|_{\varphi=\sigma} = \mathbf{0} \,.$

Simplest coarse-graining: equivalent to a mean-field (saddle-point) approximation of Z.

Relational peaking

 $\begin{array}{l|l} \hline \label{eq:scalar} \mbox{Relational localization implemented at an effective level on observable averages. E.g., <math>\chi^{\mu}$ -frame: $\sigma_x = (\mbox{fixed peaking function } \eta_x) \times (\mbox{dynamically determined reduced wavefunction } \tilde{\sigma}),$ $& & \\ \hline \mbox{$\mathcal{O}(x) \equiv \langle \hat{\mathcal{O}} \rangle_{\sigma_x} \simeq \mathcal{O}[\tilde{\sigma}]|_{\chi^{\mu} = x^{\mu}}$ & $\hat{N} = \int \mathrm{d}g_a \, \mathrm{d}^4 \chi^{\mu} \, \hat{\varphi}^{\dagger}(g_a, \chi^{\mu}) \hat{\varphi}(g_a, \chi^{\mu})$ \\ & & \\ &$

LM, Oriti, Pithis, Thürigen 2211.12768 ; LM, Oriti 2008.02774-2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Oriti, Sindoni 1311.1238

Microscopic description Based on fundamental GFT quanta

Collective states (coherent states)

Macroscopic description Based on averages of

collective observables

Cosmology

Relationality (via peaking)

Emergent QG phenomena in cosmology: three explicit examples

Setting

- Homogeneity: $\tilde{\sigma}$ depends only on MCMF clock χ^0 .
- $\blacktriangleright \text{ Isotropy: } \tilde{\sigma}_{\upsilon} \equiv \rho_{\upsilon} e^{i\theta_{\upsilon}} \text{ } (\upsilon_{\text{EPRL}} \in \mathbb{N}/2, \upsilon_{\text{BC}} \in \mathbb{R}).$
- ► Mesoscopic regime: negligible interactions.

$$\begin{split} 0 &= \tilde{\sigma}_{\upsilon}^{\prime\prime} - 2i\tilde{\pi}_0 \tilde{\sigma}_{\upsilon}^{\prime} - E_{\upsilon}^2 \tilde{\sigma} \,, \\ V(x^0) &= \sum_{\upsilon} V_{\upsilon} |\tilde{\sigma}_{\upsilon}|^2 (x^0). \end{split}$$

LM, Oriti 2008.02774; LM, Oriti 2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Oriti, Pithis 2112.00091; ...

Setting

- Homogeneity: $\tilde{\sigma}$ depends only on MCMF clock χ^0 .
- Isotropy: $\tilde{\sigma}_{\upsilon} \equiv \rho_{\upsilon} e^{i\theta_{\upsilon}} \ (\upsilon_{\text{EPRL}} \in \mathbb{N}/2, \, \upsilon_{\text{BC}} \in \mathbb{R}).$
- Mesoscopic regime: negligible interactions.

$$\frac{\text{Effective relational Freidmann dynamics}}{\left(\frac{V'}{3V}\right)^2 \simeq \left(\frac{2 \, \sharp_v \, V_v \rho_v \text{sgn}(\rho'_v) \sqrt{\mathcal{E}_v - Q_v^2 / \rho_v^2 + \mu_v^2 \rho_v^2}}{3 \, \sharp_v \, V_v \rho_v^2}\right)^2, \quad \frac{V''}{V} \simeq \frac{2 \, \pounds_v \, V_v \left[\mathcal{E}_v + 2\mu_v^2 \rho_v^2\right]}{\frac{\xi_v \, V_v \rho_v^2}{V}}$$

LM, Oriti 2008.02774; LM, Oriti 2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Oriti, Pithis 2112.00091; ...

Setting

Homogeneity:
$$\tilde{\sigma}$$
 depends only on MCMF clock χ^0 .

• Isotropy:
$$\tilde{\sigma}_{\upsilon} \equiv \rho_{\upsilon} e^{i\theta_{\upsilon}}$$
 ($\upsilon_{\text{EPRL}} \in \mathbb{N}/2$, $\upsilon_{\text{BC}} \in \mathbb{R}$).

$$\begin{split} 0 &= \tilde{\sigma}_{\upsilon}^{\prime\prime} - 2i\tilde{\pi}_0 \tilde{\sigma}_{\upsilon}^{\prime} - E_{\upsilon}^2 \tilde{\sigma} , \\ V(x^0) &= \sum_{\upsilon} V_{\upsilon} |\tilde{\sigma}_{\upsilon}|^2 (x^0) . \end{split}$$

$$\left(\frac{V'}{3V}\right)^{2} \simeq \left(\frac{2 \, \sharp_{\upsilon} \, V_{\upsilon} \rho_{\upsilon} \operatorname{sgn}(\rho_{\upsilon}') \sqrt{\mathcal{E}_{\upsilon} - Q_{\upsilon}^{2} / \rho_{\upsilon}^{2} + \mu_{\upsilon}^{2} \rho_{\upsilon}^{2}}}{3 \, \sharp_{\upsilon} \, V_{\upsilon} \rho_{\upsilon}^{2}}\right)^{2}, \quad \frac{V''}{V} \simeq \frac{2 \, \sharp_{\upsilon} \, V_{\upsilon} \left[\mathcal{E}_{\upsilon} + 2\mu_{\upsilon}^{2} \rho_{\upsilon}^{2}\right]}{\sharp_{\upsilon} \, V_{\upsilon} \rho_{\upsilon}^{2}}$$

Classical limit

When ρ_v is large (late times) and μ²_v ≃ 3πG is mildly v-dependent (or one v dominates)

 $(V'/3V)^2 \simeq 4\pi G/3 \longrightarrow \text{flat FLRW}$

 Quantum fluctuations on clock and geometric variables are under control.

LM, Oriti 2008.02774; LM, Oriti 2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Oriti, Pithis 2112.00091; ...

Setting

- Homogeneity: $\tilde{\sigma}$ depends only on MCMF clock χ^0 .
- Isotropy: $\tilde{\sigma}_{\upsilon} \equiv \rho_{\upsilon} e^{i\theta_{\upsilon}} \ (\upsilon_{\text{EPRL}} \in \mathbb{N}/2, \ \upsilon_{\text{BC}} \in \mathbb{R}).$
- Mesoscopic regime: negligible interactions.

$$\begin{split} 0 &= \tilde{\sigma}_{\upsilon}^{\prime\prime} - 2i\tilde{\pi}_0 \tilde{\sigma}_{\upsilon}^{\prime} - E_{\upsilon}^2 \tilde{\sigma} , \\ V(x^0) &= \sum_{\upsilon} V_{\upsilon} |\tilde{\sigma}_{\upsilon}|^2 (x^0). \end{split}$$

 $\left(\frac{V'}{3V}\right)^{2} \simeq \left(\frac{2 \, \sharp_{\upsilon} \, V_{\upsilon} \rho_{\upsilon} \operatorname{sgn}(\rho_{\upsilon}') \sqrt{\mathcal{E}_{\upsilon} - Q_{\upsilon}^{2} / \rho_{\upsilon}^{2} + \mu_{\upsilon}^{2} \rho_{\upsilon}^{2}}}{3 \, \sharp_{\upsilon} \, V_{\upsilon} \rho_{\upsilon}^{2}}\right)^{2}, \quad \frac{V''}{V} \simeq \frac{2 \, \sharp_{\upsilon} \, V_{\upsilon} \left[\mathcal{E}_{\upsilon} + 2\mu_{\upsilon}^{2} \rho_{\upsilon}^{2}\right]}{\sharp_{\upsilon} \, V_{\upsilon} \rho_{\upsilon}^{2}}$

Classical limit

When ρ_v is large (late times) and μ²_v ≃ 3πG is mildly v-dependent (or one v dominates)

 $(V'/3V)^2 \simeq 4\pi G/3 \longrightarrow \text{flat FLRW}$

 Quantum fluctuations on clock and geometric variables are under control.

Bounce

- A non-zero volume bounce happens for a large range of initial conditions (at least one Q_v ≠ 0 or one E_v < 0).</p>
- If N(x⁰_{bounce}) gets too small, the average singularity resolution may be spoiled by quantum effects on geometric and clock variables.

LM, Oriti 2008.02774; LM, Oriti 2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Oriti, Pithis 2112.00091; ...

Luca Marchetti

Cosmic acceleration from QG interaction

Interactions

Tensor (modulus)

Cellular (phase)

Tensor (modulus)

$$\mathsf{Tr}_{\mathcal{V}_{\gamma_l}}^{(m)}[\varphi,\bar{\varphi}] \sim (\mathcal{V}_{\gamma_l}^{(m)},\bar{\varphi}^{(l+1)/2}\varphi^{(l+1)/2})$$

Highly symmetric, studied in renormalization.
 Modulus-only dependence after *σ*-isotropy.

notation: $(\cdot, \cdot) = \int d^n \Phi dg_a$

Cellular (phase)

$$\mathsf{Tr}_{\mathcal{V}_{\gamma_{l}}}^{(p)}[\varphi,\bar{\varphi}] \sim (\mathcal{V}_{\gamma_{l}}^{(p)},\varphi^{l+1})$$

- Admit a more clear geometric interpretation.
- Modulus&phase dependence after σ-isotropy.

Ladstätter, LM, Oriti (to appear); Oriti, Pang 2105.03751.

Luca Marchetti

Ladstätter, LM, Oriti (to appear); Oriti, Pang 2105.03751.

Luca Marchetti

Inhomogeneities from QG entanglement

Cosmic inhomogeneities from quantum gravity entanglement

Classical

Setting

- 4 MCMF reference fields (χ^0, χ^i) ,
 - 1 MCMF matter field ϕ dominating the energy-momentum budget and slightly relationally inhomogeneous wrt. χ^{i} .

Quantum

Beyond condensates: time- and spacelike tetrahedra.

Inhomogeneities = Quantum Entanglement

$$\Delta; x \rangle = \mathcal{N}_{\Delta} e^{\hat{\sigma} \otimes \mathbb{I}_{-} + \mathbb{I}_{+} \otimes \hat{\tau} + \widehat{\delta \Phi} \otimes \mathbb{I}_{-} + \widehat{\delta \Psi} + \mathbb{I}_{+} \otimes \widehat{\delta \Xi}} |0\rangle .$$

Jercher, LM, Pithis 2310.17549-2308.13261; LM, Oriti 2112.12677; Jercher, Oriti, Pithis 2206.15442; Gielen, Mickel 2211.04500.

Cosmic inhomogeneities from quantum gravity entanglement

Classical

Setting

- 4 MCMF reference fields (χ^0, χ^i) ,
- I MCMF matter field φ dominating the energy-momentum budget and slightly relationally inhomogeneous wrt. χⁱ.

Quantum

Beyond condensates: time- and spacelike tetrahedra.

$$\begin{split} & \text{Inhomogeneities} = \text{Quantum Entanglement} \\ & |\Delta; x\rangle = \mathcal{N}_{\Lambda} e^{\hat{\sigma} \otimes \mathbb{I}_{-} + \mathbb{I}_{+} \otimes \hat{\tau} + \widehat{\delta \Phi} \otimes \mathbb{I}_{-} + \widehat{\delta \Psi} + \mathbb{I}_{+} \otimes \widehat{\delta \Xi}} |0\rangle \,. \end{split}$$

Classical dynamics with trans-Planckian QG effects

• Matter $\delta \phi_{\mathsf{GFT}}$ and "curvature-like" (isotropic) pert. $\tilde{\mathcal{R}}$ emerge from to two-body relational nearest-neighbor QG correlations $(\delta \Phi, \delta \Psi, \delta \Xi)$.

$$\begin{split} \delta \phi_{\mathsf{GFT}}^{\prime\prime} + k^2 a^4 \delta \phi_{\mathsf{GFT}} &= \left(\frac{a^2 k}{M_{\mathsf{pl}}}\right) j_{\phi}[\bar{\phi}] \,, \\ \tilde{\mathcal{R}}_{\mathsf{GFT}}^{\prime\prime} + k^2 a^4 \tilde{\mathcal{R}}_{\mathsf{GFT}} &= \left(\frac{a^2 k}{M_{*}}\right) j_{\bar{\mathcal{R}}}[\bar{\phi}] \,, \end{split}$$

- Trans-Planckian QG corrections to the dynamics of scalar isotropic perturbations.
- Remarkable agreement with GR at larger scales.

Top: $\tilde{\mathcal{R}}_{GFT}$ (blue) and $\tilde{\mathcal{R}}_{GR}$ (dashed red) for $k/M_{Pl} = 10^2$. Bottom: their difference $\Delta \tilde{\mathcal{R}}$.

Jercher, LM, Pithis 2310.17549-2308.13261; LM, Oriti 2112.12677; Jercher, Oriti, Pithis 2206.15442; Gielen, Mickel 2211.04500.

Challenging goals, every bit of input is important!

Backup

Definition

Group Field Theories: theories of a field φ : $G^d \to \mathbb{C}$ defined on d copies of a group manifold G. *d* is the dimension of the "spacetime to be" (d = 4) and *G* is the local gauge group of gravity, $G = SL(2, \mathbb{C})$ or, in some cases, G = SU(2).

Oriti 1110.5606; Reisenberger, Rovelli 0002083; De Pietri, Petronio 0004045; Gurau 1006.0714; Baratin, Oriti 1002.4723; Finocchiaro, Oriti 1812.03550

Luca Marchetti

Group Field Theories: theories of a field φ : $G^d \to \mathbb{C}$ defined on *d* copies of a group manifold *G*. *d* is the dimension of the "spacetime to be" (d = 4) and *G* is the local gauge group of gravity, $G = SL(2, \mathbb{C})$ or, in some cases, G = SU(2).

$$\mathcal{S}[arphi,ar{arphi}] = \int \mathrm{d}g_{a}ar{arphi}(g_{a})\mathcal{K}[arphi](g_{a}) + \sum_{\gamma} rac{\lambda_{\gamma}}{n_{\gamma}} \operatorname{Tr}_{\mathcal{V}_{\gamma}}[arphi] + \mathrm{c.c.} \; .$$

- Interaction terms are combinatorially non-local.
- Field arguments convoluted pairwise following the combinatorial pattern dictated by the graph γ:

$$\mathsf{Tr}_{\mathcal{V}\gamma}[\varphi] = \int \prod_{i=1}^{n_{\gamma}} \mathrm{d}g_{\mathfrak{a}} \prod_{(\mathfrak{a},i;b,j)} \mathcal{V}_{\gamma}(g_{\mathfrak{a}}^{(i)}, g_{\mathfrak{b}}^{(j)}) \prod_{i=1}^{n_{\gamma}} \varphi(g_{\mathfrak{a}}^{(i)})$$

Oriti 1110.5606; Reisenberger, Rovelli 0002083; De Pietri, Petronio 0004045; Gurau 1006.0714; Baratin, Oriti 1002.4723; Finocchiaro, Oriti 1812.03550

Action

Group Field Theories: theories of a field φ : $G^d \to \mathbb{C}$ defined on *d* copies of a group manifold *G*. *d* is the dimension of the "spacetime to be" (d = 4) and *G* is the local gauge group of gravity, $G = SL(2, \mathbb{C})$ or, in some cases, G = SU(2).

$$\mathcal{S}[arphi,ar{arphi}] = \int \mathrm{d}g_{a}ar{arphi}(g_{a})\mathcal{K}[arphi](g_{a}) + \sum_{\gamma}rac{\lambda_{\gamma}}{n_{\gamma}}\,\mathsf{Tr}_{\mathcal{V}_{\gamma}}[arphi] + ext{c.c.}$$

- Interaction terms are combinatorially non-local.
- Field arguments convoluted pairwise following the combinatorial pattern dictated by the graph γ:

$$\mathsf{Tr}_{\mathcal{V}\gamma}[\varphi] = \int \prod_{i=1}^{n_{\gamma}} \mathrm{d}g_{a} \prod_{(a,i;b,j)} \mathcal{V}_{\gamma}(g_{a}^{(i)}, g_{b}^{(j)}) \prod_{i=1}^{n_{\gamma}} \varphi(g_{a}^{(i)}) \,.$$

$$Z[\varphi,\bar{\varphi}] = \sum_{\Gamma} w_{\Gamma}(\{\lambda_{\gamma}\})A_{\Gamma}$$

- Γ = stranded diagrams dual to d-dimensional cellular complexes of arbitrary topology.
- Amplitudes A_{Γ} = sums over group theoretic data associated to the cellular complex.

Oriti 1110.5606; Reisenberger, Rovelli 0002083; De Pietri, Petronio 0004045; Gurau 1006.0714; Baratin, Oriti 1002.4723; Finocchiaro, Oriti 1812.03550.

Luca Marchetti

Developments in GFT Cosmology

Action

Partition function

Group Field Theories: theories of a field φ : $G^d \to \mathbb{C}$ defined on *d* copies of a group manifold *G*. *d* is the dimension of the "spacetime to be" (d = 4) and *G* is the local gauge group of gravity, $G = SL(2, \mathbb{C})$ or, in some cases, G = SU(2).

$$S[arphi,ar{arphi}] = \int \mathrm{d}g_{a}ar{arphi}(g_{a})\mathcal{K}[arphi](g_{a}) + \sum_{\gamma}rac{\lambda_{\gamma}}{n_{\gamma}}\,\mathsf{Tr}_{\mathcal{V}_{\gamma}}[arphi] + ext{c.c.}$$

- Interaction terms are combinatorially non-local.
- Field arguments convoluted pairwise following the combinatorial pattern dictated by the graph γ:

$$\mathsf{Tr}_{\mathcal{V}\gamma}[\varphi] = \int \prod_{i=1}^{n_{\gamma}} \mathrm{d}g_{\mathfrak{a}} \prod_{(\mathfrak{a},i;b,j)} \mathcal{V}_{\gamma}(g_{\mathfrak{a}}^{(i)}, g_{\mathfrak{b}}^{(j)}) \prod_{i=1}^{n_{\gamma}} \varphi(g_{\mathfrak{a}}^{(i)}) \,.$$

$$Z[\varphi, \bar{\varphi}] = \sum_{\Gamma} w_{\Gamma}(\{\lambda_{\gamma}\})A_{\Gamma} = \text{ complete spinfoam model.}$$

- Γ = stranded diagrams dual to d-dimensional cellular complexes of arbitrary topology.
- Amplitudes A_{Γ} = sums over group theoretic data associated to the cellular complex.
- \blacktriangleright \mathcal{K} and \mathcal{V}_{γ} chosen to match the desired spinfoam model.

Oriti 1110.5606; Reisenberger, Rovelli 0002083; De Pietri, Petronio 0004045; Gurau 1006.0714; Baratin, Oriti 1002.4723; Finocchiaro, Oriti 1812.03550

Luca Marchetti

Developments in GFT Cosmology

Action

Partition function

Group Field Theory and Loop Quantum Gravity

One-particle Hilbert space

The one-particle Hilbert space is $\mathcal{H}_{tetra} \subset \otimes_{a=1}^4 \mathcal{H}_{\Delta_a}$ (subset defined by the imposition of constraints)

Finocchiaro, Oriti 1812.03550; Baez, Barrett 9903060; Baratin, Oriti 1002.4723; Gielen, Oriti 1004.5371; Oriti 1310.7786.

Luca Marchetti

Group Field Theory and Loop Quantum Gravity

One-particle Hilbert space

The one-particle Hilbert space is $\mathcal{H}_{tetra} \subset \otimes_{a=1}^4 \mathcal{H}_{\Delta_a}$ (subset defined by the imposition of constraints)

```
Lie algebra (metric)
```

```
\mathcal{H}_{\Delta_a} = L^2(\mathfrak{g})
```

Constraints

Geometricity constraints (appropriately encoded in \mathcal{K} and \mathcal{V}_{γ}) allow for a d-1-simplicial interpretation of the fundamental quanta:

Closure

Simplicity

$$\sum_{a} B_{a} = 0$$
(faces of the tetrahedron close)

•
$$X \cdot (B - \gamma \star B)_a = 0$$
 (EPRL)

►
$$X \cdot B_a = 0$$
 (BC).

Finocchiaro, Oriti 1812.03550; Baez, Barrett 9903060; Baratin, Oriti 1002.4723; Gielen, Oriti 1004.5371; Oriti 1310.7786.

One-particle Hilbert space

The one-particle Hilbert space is $\mathcal{H}_{tetra} \subset \otimes_{a=1}^4 \mathcal{H}_{\Delta_a}$ (subset defined by the imposition of constraints)

Lie algebra (metric) $\mathcal{H}_{\Delta_{a}} = L^{2}(\mathfrak{g}) \xrightarrow{\text{Non-comm.}} \mathcal{H}_{\Delta_{a}} = L^{2}(G)$

Constraints

Geometricity constraints (appropriately encoded in \mathcal{K} and \mathcal{V}_{γ}) allow for a d-1-simplicial interpretation of the fundamental quanta:

h

Closure

Simplicity

$$\sum_{a} B_{a} = 0$$
 faces of the tetrahedron close).

•
$$X \cdot (B - \gamma \star B)_a = 0$$
 (EPRL)

$$\blacktriangleright X \cdot B_a = 0 \text{ (BC)}.$$

Finocchiaro, Oriti 1812.03550; Baez, Barrett 9903060; Baratin, Oriti 1002.4723; Gielen, Oriti 1004.5371; Oriti 1310.7786.

One-particle Hilbert space

The one-particle Hilbert space is $\mathcal{H}_{tetra}\subset \otimes_{a=1}^4 \mathcal{H}_{\Delta_a}$ (subset defined by the imposition of constraints)

Lie algebra (metric) $\mathcal{H}_{\Delta_a} = L^2(\mathfrak{g}) \xrightarrow{\text{Non-comm.}} \mathcal{H}_{\Delta_a} = L^2(G) \xrightarrow{\text{Peter-Weyl}} \mathcal{H}_{\Delta_a} = \bigoplus_{J_a} \mathcal{H}_{J_a}$ Constraints

Geometricity constraints (appropriately encoded in K and V_{γ}) allow for a d-1-simplicial interpretation of the fundamental quanta:

Closure

Simplicity

 $\sum_{a} B_{a} = 0$ (faces of the tetrahedron close).

• $X \cdot (B - \gamma \star B)_a = 0$ (EPRL);

$$\blacktriangleright X \cdot B_a = 0 \text{ (BC)}.$$

Finocchiaro, Oriti 1812.03550; Baez, Barrett 9903060; Baratin, Oriti 1002.4723; Gielen, Oriti 1004.5371; Oriti 1310.7786.

The one-particle Hilbert space is $\mathcal{H}_{tetra} \subset \otimes_{a=1}^4 \mathcal{H}_{\Delta_a}$ (subset defined by the imposition of constraints)

Lie algebra (metric) $\mathcal{H}_{\Delta_{a}} = L^{2}(\mathfrak{g}) \xleftarrow{\text{Non-comm.}}_{\text{FT}} \qquad \mathcal{H}_{\Delta_{a}} = L^{2}(G) \xleftarrow{\text{Peter-Weyl}}_{\text{Theorem}} \qquad \mathcal{H}_{\Delta_{a}} = \bigoplus_{J_{a}} \mathcal{H}_{J_{a}} \qquad \mathcal{H}_{\Delta_{a}} = \bigoplus_{J_{a}} \mathcal{H}_{\Delta_{a}} = \bigoplus_{J_{a}} \mathcal{H}_{\Delta_{a}} = \bigoplus_{J_{a}} \mathcal{H}_{\Delta_{a}} \qquad \mathcal{H}_{\Delta_{a}} = \bigoplus_{J_{a}} \mathcal{H}_{A} = \bigoplus_{J_{a}} \mathcal{H}_{A$

Impose closure (gauge invariance).

Finocchiaro, Oriti 1812.03550; Baez, Barrett 9903060; Baratin, Oriti 1002.4723; Gielen, Oriti 1004.5371; Oriti 1310.7786.

000

The one-particle Hilbert space is $\mathcal{H}_{tetra} \subset \otimes_{a=1}^4 \mathcal{H}_{\Delta_a}$ (subset defined by the imposition of constraints)

Lie algebra (metric) e algebra (metric) $\mathcal{H}_{\Delta_a} = L^2(\mathfrak{g}) \xrightarrow{\text{Non-comm.}} \mathcal{H}_{\Delta_a} = L^2(G) \xrightarrow{\text{Peter-Weyl}} \mathcal{H}_{\Delta_a} = \bigoplus_{J_a} \mathcal{H}_{J_a}$ Representation space Constraints Geometricity constraints (appropriately encoded in \mathcal{K} and \mathcal{V}_{γ}) allow for a d-1-simplicial interpretation of the fundamental quanta: Simplicity Closure $\sum_{a} B_{a} = 0 \qquad \qquad \blacktriangleright \quad X \cdot (B - \gamma \star B)_{a} = 0 \text{ (EPRL)};$ (faces of the tetrahedron close). $\qquad \blacktriangleright \quad X \cdot B_{a} = 0 \text{ (BC)}.$ • Impose simplicity and reduce to G = SU(2). $\mathcal{H}_{\text{tetra}} = \bigoplus_{\vec{i}} \text{Inv} \left[\bigotimes_{a=1}^{4} \mathcal{H}_{j_a} \right]$ Impose closure (gauge invariance). = open spin-network vertex space

Finocchiaro, Oriti 1812.03550; Baez, Barrett 9903060; Baratin, Oriti 1002.4723; Gielen, Oriti 1004.5371; Oriti 1310.7786.

Luca Marchetti

000

Tetrahedron wavefunction

 $\varphi(g_1,\ldots,g_4)$ (subject to constraints)

Oriti 1310.7786; Oriti 1408.7112; Sahlman, Sherif 2302.03612.

Luca Marchetti

Oriti 1310.7786; Oriti 1408.7112; Sahlman, Sherif 2302.03612.

Luca Marchetti

$$\mathcal{F}_{\mathsf{GFT}} = \bigoplus_{V=0}^{\infty} \operatorname{sym} \left[\mathcal{H}_{\mathsf{tetra}}^{(1)} \otimes \mathcal{H}_{\mathsf{tetra}}^{(2)} \otimes \ldots \mathcal{H}_{\mathsf{tetra}}^{(V)} \right]$$

- ▶ $\mathcal{F}_{\mathsf{GFT}}$ generated by action of $\hat{\varphi}^{\dagger}(g_a)$ on $|0\rangle$, with $[\hat{\varphi}(g_a), \hat{\varphi}^{\dagger}(g_a')] = \mathbb{I}_{\mathcal{G}}(g_a, g_a')$.
- $\mathcal{H}_{\Gamma} \subset \mathcal{F}_{GFT}$, \mathcal{H}_{Γ} space of states associated to connected simplicial complexes Γ .
 - Generic states do not correspond to connected simplicial lattices nor classical simplicial geometries.
- Similar to \mathcal{H}_{LQG} but also different: no continuum intuition, orthogonality wrt nodes, not graphs.

$$\mathcal{F}_{\mathsf{GFT}} = \bigoplus_{V=0}^{\infty} \operatorname{sym} \left[\mathcal{H}_{\mathsf{tetra}}^{(1)} \otimes \mathcal{H}_{\mathsf{tetra}}^{(2)} \otimes \ldots \mathcal{H}_{\mathsf{tetra}}^{(V)} \right]$$

- ► \mathcal{F}_{GFT} generated by action of $\hat{\varphi}^{\dagger}(g_a)$ on $|0\rangle$, with $[\hat{\varphi}(g_a), \hat{\varphi}^{\dagger}(g_a')] = \mathbb{I}_G(g_a, g_a')$.
- $\mathcal{H}_{\Gamma} \subset \mathcal{F}_{GFT}$, \mathcal{H}_{Γ} space of states associated to connected simplicial complexes Γ .
 - Generic states do not correspond to connected simplicial lattices nor classical simplicial geometries.
- Similar to $\mathcal{H}_{1,\text{OG}}$ but also different: no continuum intuition, orthogonality wrt nodes, not graphs.

Volume operator
$$\hat{V} = \int dg_a^{(1)} dg_a^{(2)} V(g_a^{(1)}, g_a^{(2)}) \hat{\varphi}^{\dagger}(g_a^{(1)}) \hat{\varphi}(g_a^{(2)}) = \sum_{j_a, m_a, \iota} V_{j_a, \iota} \hat{\varphi}_{j_a, m_a, \iota}^{\dagger} \hat{\varphi}_{j_a, m_a, \iota} \hat{\varphi}$$

elements between spin-network states between *m* powers of $\hat{\varphi}^{\dagger}$ and *n* powers of $\hat{\varphi}$.

Oriti 1310.7786; Oriti 1408.7112; Sahlman, Sherif 2302.03612.

Luca Marchetti
Spatial relational homogeneity: σ depends on a MCMF "clock" scalar field χ^0 ($\mathcal{D} = \text{minisuperspace} + \text{clock}$)

Oriti 2008.02774; LM, Oriti 2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Oriti, Pithis 2112.00091

Luca Marchetti

Spatial relational homogeneity: σ depends on a MCMF "clock" scalar field χ^0 ($\mathcal{D} = \text{minisuperspace} + \text{clock}$)

Collective Observables

Number, volume (determined e.g. by the mapping with LQG) and matter operators (notation: $(\cdot, \cdot) = \int d\chi^0 dg_a$):

$$\begin{split} \hat{N} &= (\hat{\varphi}^{\dagger}, \hat{\varphi}) & \hat{V} &= (\hat{\varphi}^{\dagger}, V[\hat{\varphi}]) \\ \hat{X}^{0} &= \left(\hat{\varphi}^{\dagger}, \chi^{0} \hat{\varphi}\right) & \hat{\Pi}^{0} &= -i(\hat{\varphi}^{\dagger}, \partial_{0} \hat{\varphi}) \end{split}$$

▶ Observables ↔ collective operators on Fock space.

Oriti 2008.02774; LM, Oriti 2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Oriti, Pithis 2112.00091

Luca Marchetti

Spatial relational homogeneity: σ depends on a MCMF "clock" scalar field χ^0 ($\mathcal{D} = \text{minisuperspace} + \text{clock}$)

Collective Observables

Number, volume (determined e.g. by the mapping with LQG) and matter operators (notation: $(\cdot, \cdot) = \int d\chi^0 dg_a$):

$$\begin{split} \hat{N} &= (\hat{\varphi}^{\dagger}, \hat{\varphi}) & \hat{V} &= (\hat{\varphi}^{\dagger}, V[\hat{\varphi}]) \\ \hat{X}^{0} &= \left(\hat{\varphi}^{\dagger}, \chi^{0} \hat{\varphi}\right) & \hat{\Pi}^{0} &= -i(\hat{\varphi}^{\dagger}, \partial_{0} \hat{\varphi}) \end{split}$$

- $\blacktriangleright \quad \mathsf{Observables} \leftrightarrow \mathsf{collective} \ \mathsf{operators} \ \mathsf{on} \ \mathsf{Fock} \ \mathsf{space}.$
- (Ô)_{σx⁰} = O[σ̃]|_{χ⁰=x⁰}: functionals of σ̃ localized at x⁰.

Oriti 2008.02774; LM, Oriti 2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Oriti, Pithis 2112.00091

Luca Marchetti

Spatial relational homogeneity: σ depends on a MCMF "clock" scalar field χ^0 ($\mathcal{D} = \text{minisuperspace} + \text{clock}$)

Collective Observables

Number, volume (determined e.g. by the mapping with LQG) and matter operators (notation: $(\cdot, \cdot) = \int d\chi^0 dg_a$): Inter

$$\begin{split} \hat{N} &= (\hat{\varphi}^{\dagger}, \hat{\varphi}) & \hat{V} &= (\hat{\varphi}^{\dagger}, V[\hat{\varphi}]) \\ \hat{X}^{0} &= \left(\hat{\varphi}^{\dagger}, \chi^{0} \hat{\varphi}\right) & \hat{\Pi}^{0} &= -i(\hat{\varphi}^{\dagger}, \partial_{0} \hat{\varphi}) \end{split}$$

- Observables \leftrightarrow collective operators on Fock space.
- $\langle \hat{O} \rangle_{\sigma_{\chi^0}} = O[\tilde{\sigma}]|_{\chi^0 = x^0}:$ functionals of $\tilde{\sigma}$ localized at x^0 .

Relationality

Averaged evolution wrt x⁰ is physical:

- Emergent effective relational description:
 - Small clock quantum fluctuations.
 - Effective Hamiltonian $H_{\sigma_{\chi^0}} \simeq \langle \hat{\Pi}^0 \rangle_{\sigma_{\chi^0}}$.

Oriti 2008.02774; LM, Oriti 2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Oriti, Pithis 2112.00091

Luca Marchetti

Spatial relational homogeneity: σ depends on a MCMF "clock" scalar field χ^0 (\mathcal{D} = minisuperspace + clock)

Collective Observables

Number, volume (determined e.g. by the mapping with LQG) and matter operators (notation: $(\cdot, \cdot) = \int d\chi^0 dg_a$):

$$\begin{split} \hat{N} &= (\hat{\varphi}^{\dagger}, \hat{\varphi}) & \hat{V} &= (\hat{\varphi}^{\dagger}, V[\hat{\varphi}]) \\ \hat{X}^{0} &= \left(\hat{\varphi}^{\dagger}, \chi^{0} \hat{\varphi}\right) & \hat{\Pi}^{0} &= -i(\hat{\varphi}^{\dagger}, \partial_{0} \hat{\varphi}) \end{split}$$

• Observables \leftrightarrow collective operators on Fock space.

Relationality

Averaged evolution wrt x⁰ is physical:

$$\langle \hat{\chi}^0 \rangle_{\sigma_{\chi^0}} \equiv \langle \hat{X}^0 \rangle_{\sigma_{\chi^0}} / \langle \hat{N} \rangle_{\sigma_{\chi^0}} \simeq x^0$$

- Emergent effective relational description:
 - Small clock quantum fluctuations.
 - Effective Hamiltonian $H_{\sigma_{\chi^0}} \simeq \langle \hat{\Pi}^0 \rangle_{\sigma_{\chi^0}}$.

$$\begin{array}{l} \langle \hat{O} \rangle_{\sigma_{\chi^0}} = O[\tilde{\sigma}]|_{\chi^0 = \chi^0}: \\ \text{functionals of } \tilde{\sigma} \\ \text{localized at } \chi^0. \end{array} \begin{array}{l} & \underset{\text{isotropy}}{\overset{\text{wavefunction}}{\overset{\text{isotropy}}{\overset{\text{wavefunction}}{\overset{wavefunction}}{\overset{wavefunction}}{\overset{wavefunction}}{\overset{wavefunction}}{\overset{wavefunction}}{\overset{wavefunction}}{\overset{wavefunction}}{\overset{wavefunction}}{\overset{wavefunction}}{\overset{wavefunction}}{\overset{wavefunction}}{\overset{wavefunction}}{\overset{wavefunction}}{\overset{wavefunction}}{\overset{wavefunction}}{\overset{wavefunction}}{\overset{wavefunction}}{\overset{wavefunction}}{\overset{wavefunction}}{\overset{wave$$

Oriti 2008.02774; LM, Oriti 2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Oriti, Pithis 2112.00091

Luca Marchetti

Including timelike tetrahedra allows to better couple the physical frame: two-sector (+, -) GFT!

$$\ket{\psi} = \mathcal{N}_{\psi} \exp(\hat{\sigma} \otimes \mathbb{I}_{-} + \mathbb{I}_{+} \otimes \widehat{\tau} + \widehat{\delta \Phi} \otimes \mathbb{I}_{-} + \widehat{\delta \Psi} + \mathbb{I}_{+} \otimes \widehat{\delta \Xi}) \ket{0}$$

Collective states

Jercher, LM, Pithis (to appear); Jercher, Oriti, Pithis 2206.15442.

Luca Marchetti

Including timelike tetrahedra allows to better couple the physical frame: two-sector (+, -) GFT!

$$|\psi
angle = \mathcal{N}_{\psi} \exp(\hat{\sigma} \otimes \mathbb{I}_{-} + \mathbb{I}_{+} \otimes \widehat{ au} + \widehat{\delta \Phi} \otimes \mathbb{I}_{-} + \widehat{\delta \Psi} + \mathbb{I}_{+} \otimes \widehat{\delta \Xi}) |0
angle$$

Background

- $\hat{\sigma} = (\sigma, \hat{\varphi}^{\dagger}_{+})$: spacelike condensate.
- $\hat{\tau} = (\tau, \hat{\varphi}_{-}^{\dagger})$: timelike condensate.
- τ , σ peaked; $\tilde{\tau}$, $\tilde{\sigma}$ homogeneous.

Jercher, LM, Pithis (to appear); Jercher, Oriti, Pithis 2206.15442.

Collective states

Including timelike tetrahedra allows to better couple the physical frame: two-sector (+, -) GFT!

$$\ket{\psi} = \mathcal{N}_{\psi} \exp(\hat{\sigma} \otimes \mathbb{I}_{-} + \mathbb{I}_{+} \otimes \widehat{\tau} + \widehat{\delta \Phi} \otimes \mathbb{I}_{-} + \widehat{\delta \Psi} + \mathbb{I}_{+} \otimes \widehat{\delta \Xi}) \ket{0}$$

Background

- $\hat{\sigma} = (\sigma, \hat{\varphi}^{\dagger}_{+})$: spacelike condensate.
- $\hat{\tau} = (\tau, \hat{\varphi}_{-}^{\dagger})$: timelike condensate.
- τ , σ peaked; $\tilde{\tau}$, $\tilde{\sigma}$ homogeneous.

Perturbations

- $\bullet \quad \widehat{\delta\Phi} = (\delta\Phi, \hat{\varphi}_{+}^{\dagger}\hat{\varphi}_{+}^{\dagger}), \ \widehat{\delta\Psi} = (\delta\Psi, \hat{\varphi}_{+}^{\dagger}\hat{\varphi}_{-}^{\dagger}), \ \widehat{\delta\Xi} = (\delta\Xi, \hat{\varphi}_{-}^{\dagger}\hat{\varphi}_{-}^{\dagger}).$
- $\delta \Phi$, $\delta \Psi$ and $\delta \Xi$ small and relationally inhomogeneous.
- Perturbations = nearest neighbour 2-body correlations.

Jercher, LM, Pithis (to appear); Jercher, Oriti, Pithis 2206.15442.

Luca Marchetti

Including timelike tetrahedra allows to better couple the physical frame: two-sector (+, -) GFT!

$$\ket{\psi} = \mathcal{N}_{\psi} \exp(\hat{\sigma} \otimes \mathbb{I}_{-} + \mathbb{I}_{+} \otimes \widehat{\tau} + \widehat{\delta \Phi} \otimes \mathbb{I}_{-} + \widehat{\delta \Psi} + \mathbb{I}_{+} \otimes \widehat{\delta \Xi}) \ket{0}$$

Background

- $\hat{\tau} = (\tau, \hat{\varphi}^{\dagger})$: timelike condensate.
- τ, σ peaked; $\tilde{\tau}, \tilde{\sigma}$ homogeneous.

Perturbations

- $\hat{\sigma} = (\sigma, \hat{\varphi}_{\pm}^{\dagger})$: spacelike condensate. $\hat{\delta \Phi} = (\delta \Phi, \hat{\varphi}_{\pm}^{\dagger} \hat{\varphi}_{\pm}^{\dagger}), \ \hat{\delta \Psi} = (\delta \Psi, \hat{\varphi}_{\pm}^{\dagger} \hat{\varphi}_{\pm}^{\dagger}), \ \hat{\delta \Xi} = (\delta \Xi, \hat{\varphi}_{\pm}^{\dagger} \hat{\varphi}_{\pm}^{\dagger}).$
 - $\delta \Phi$, $\delta \Psi$ and $\delta \Xi$ small and relationally inhomogeneous.
 - Perturbations = nearest neighbour 2-body correlations.

Scalar isotropic perturbations

2 mean-field eqs. for 3 variables ($\delta \Phi$, $\delta \Psi$, $\delta \Xi$):

$$\left<\delta S/\delta\hat{\varphi}_{+}^{\dagger}\right>_{\psi} = 0 = \left<\delta S/\delta\hat{\varphi}_{-}^{\dagger}\right>_{\psi}$$

Late times and single (spacelike) rep. label.

Jercher, LM, Pithis (to appear); Jercher, Oriti, Pithis 2206.15442.

Collective states

Including timelike tetrahedra allows to better couple the physical frame: two-sector (+, -) GFT!

$$|\psi\rangle = \mathcal{N}_{\psi} \exp(\hat{\sigma} \otimes \mathbb{I}_{-} + \mathbb{I}_{+} \otimes \widehat{\tau} + \widehat{\delta \Phi} \otimes \mathbb{I}_{-} + \widehat{\delta \Psi} + \mathbb{I}_{+} \otimes \widehat{\delta \Xi}) \left| 0 \right\rangle$$

Background

- $\hat{\tau} = (\tau, \hat{\varphi}^{\dagger})$: timelike condensate.
- τ, σ peaked; $\tilde{\tau}, \tilde{\sigma}$ homogeneous.

Perturbations

- $\hat{\sigma} = (\sigma, \hat{\varphi}_{\pm}^{\dagger})$: spacelike condensate. $\hat{\delta \Phi} = (\delta \Phi, \hat{\varphi}_{\pm}^{\dagger} \hat{\varphi}_{\pm}^{\dagger}), \ \hat{\delta \Psi} = (\delta \Psi, \hat{\varphi}_{\pm}^{\dagger} \hat{\varphi}_{\pm}^{\dagger}), \ \hat{\delta \Xi} = (\delta \Xi, \hat{\varphi}_{\pm}^{\dagger} \hat{\varphi}_{\pm}^{\dagger}).$
 - $\delta \Phi$, $\delta \Psi$ and $\delta \Xi$ small and relationally inhomogeneous.
 - Perturbations = nearest neighbour 2-body correlations.

Scalar isotropic perturbations

- 2 mean-field eqs. for 3 variables $(\delta \Phi, \delta \Psi, \delta \Xi)$: $\langle \delta S / \delta \hat{\varphi}^{\dagger}_{+} \rangle_{ab} = 0 = \langle \delta S / \delta \hat{\varphi}^{\dagger}_{-} \rangle_{ab}$
- Late times and single (spacelike) rep. label. ►

$$\langle \hat{\mathcal{O}}_{\mathsf{GFT}} \rangle_{\Delta;x} = \bar{\mathcal{O}}_{\mathsf{GFT}}(x^0) + \delta \mathcal{O}_{\mathsf{GFT}}(x^{\mu}).$$

Physical behavior of spatial derivative terms fixes dynamical freedom (e.g. in $\delta \Phi$).

Jercher, LM, Pithis (to appear); Jercher, Oriti, Pithis 2206.15442.

Luca Marchetti

Collective states