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The continuum limit problem



Continuum physics and QG: the general perspective
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The localization problem



Relational strategy: the classical and quantum GR perspective

Background

independence
Problem of

localization
Relational strategy

Quite well understood from a classical perspective, less from a quantum perspective.

QClassicalQ Quantum GR

Physical localization via relational observables:

▶ Take two phase space functions, f and T with

{T ,CH} ̸= 0 (T relational clock).

▶ The relational extension Ff ,T (τ) of f encodes

the value of f when T reads τ .

▶ Evolution in τ is relational.

▶ Ff ,T (τ) is a very complicated function.

▶ Applications almost only for very simple systems.

Dirac approach: Quantize first.

▶ Perspective neutral.

▶ Poor control of the physical Hilbert space.

Reduced approach: Relationality first.

▶ No quantum constraint to solve.

▶ Not perspective neutral. Too complicated to

implement in most of the cases.

Isham 9210011; Rovelli Class. Quantum Grav. 8 297; Dittrich 0507106; Hoehn et al. 1912.00033 and 2007.00580; Tambornino 1109.0740; . . .
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Relational strategy and emergent quantum gravity theories

Background

independence
Problem of

localization
Relational strategy

A genuinely new dimension of the problem arises for emergent QG theories.

Microscopic pre-geo Macroscopic proto-geo

▶ Fundamental d.o.f. are weakly related to

spacetime quantities;

▶ Set of collective

observables;

▶ The latter expected to emerge from the

former when a continuum limit is taken.

▶ Coarse grained states or

probability distributions.

The quantities whose evolution we want to describe relationally are the

result of a coarse-graining of some fundamental d.o.f.

Effective approaches:
▶ More mathematical control and physical insights.

▶ Relevant for observative purposes.

LM, Oriti 2008.02774; Giulini 0603087; Kuchar Int.J.Mod.Phys.D 20(2011); Isham 9210011; Rovelli Class. Quantum Grav. 8 297;
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The (T)GFT approach to quantum gravity

GFTs are QFTs of atoms of spacetime.

▶ Take seriously the idea of a microscopic structure of spacetime.

▶ Access to powerful field theoretic methods (Fock space, RG. . . )!

Group Field Theory Quanta y

▶ GFT quanta are atoms of quantum 3-space, i.e. tetrahedra.

▶ Data associated to a single quantum are field data of a

tetrahedron (ga = gravitational, χ = scalar fields).

Group Field Theory Processes

▶ GFT Feynman diagrams (QG processes) are associated with

4d triangulated (pseudo-)manifolds.

▶ ZGFT = discrete matter-gravity path-integral.

φ
†(ga,χ) |0⟩ =

g4

g1

g2

g3
•χ

Oriti 0912.2441; Oriti 1110.5606; Oriti 1408.7112; Krajewski 1210.6257; Oriti 1807.04875; Gielen, Sindoni 1602.08104; . . .
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(Causal)
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Tensor models
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Quantum gravity coherent states
yC

o
lle

ct
iv
e
st
a
te
sy (ciaoGFT coherent states

▶ From the GFT perspective, continuum geometries are associated to large number of quanta.

▶ The simplest states that can accommodate infinite number of quanta are coherent states:

|σ⟩ = Nσ exp

[∫
d
dlχ

∫
dga σ(ga, χ

α)φ̂†(ga, χ
α)

]
|0⟩ .

C
o
ar
se
-g
ra
in
in
g

(ciaoMean-field approximation

▶ When interactions are small (certainly satisfied in an appropriate regime) the dynamics of σ is:〈
δSGFT[φ̂, φ̂

†]

δφ̂(gI , xα)

〉
σ

=

∫
dha

∫
dχK(ga, ha, (x

α − χ
α)2)σ(ha, χ

α) + λ
δV [φ, φ∗]

δφ∗(ga, xα)

∣∣∣∣
φ=σ

= 0 .

▶ Simplest coarse-graining: equivalent to a mean-field (saddle-point) approximation of Z .

L
o
ca

liz
a
ti
o
n

Relational peaking(

▶ Relational localization implemented at an effective level on observable averages. E.g., χµ-frame:

σx = (fixed peaking function ηx ) × (dynamically determined reduced wavefunction σ̃) ,

O(x) ≡ ⟨Ô⟩σx ≃ O[σ̃]|χµ=xµ

⟨χ̂µ⟩σx ≃ xµ
e.g.

N̂ =

∫
dga d

4
χ
µ
φ̂

†(ga, χ
µ)φ̂(ga, χ

µ)

N(x) =

∫
dga |σ̃(ga, xµ)|2

LM, Oriti, Pithis, Thürigen 2211.12768 ; LM, Oriti 2008.02774-2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Oriti, Sindoni 1311.1238.
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Relationality

(via peaking)

Microscopic

description

Based on funda-

mental GFT quanta

Coarse-graining

(via mean-field)

Collective states

(coherent states)

Macroscopic

description

Based on averages of

collective observables

Cosmology



Emergent QG phenomena in cosmology:

three explicit examples



Quantum bounce and classical limit



Quantum bounce and classical limit
E
ff
.
d
yn

a
m
ic
s Setting

▶ Homogeneity: σ̃ depends only on MCMF clock χ0.

▶ Isotropy: σ̃υ ≡ ρυe
iθυ (υEPRL ∈ N/2, υBC ∈ R).

▶ Mesoscopic regime: negligible interactions.

0 = σ̃
′′
υ − 2iπ̃0σ̃

′
υ − E 2

υσ̃ ,

V (x0) =
∑∫

υ

Vυ|σ̃υ|2(x0).

Effective relational Freidmann dynamics(
V ′

3V

)2

≃
(

2
∑∫
υ
Vυρυsgn(ρ

′
υ)
√

Eυ − Q2
υ/ρ

2
υ + µ2

υρ
2
υ

3
∑∫
υ
Vυρ2υ

)2

,
V ′′

V
≃

2
∑∫
υ
Vυ
[
Eυ + 2µ2

υρ
2
υ

]
∑∫
υ
Vυρ2υ

Classical limit Bounce

▶ When ρυ is large (late times) and µ2
υ ≃ 3πG

is mildly υ-dependent (or one υ dominates)

(V ′
/3V )2 ≃ 4πG/3 flat FLRW

▶ Quantum fluctuations on clock and geometric

variables are under control.

▶ A non-zero volume bounce happens for a large

range of initial conditions (at least one Qυ ̸= 0 or

one Eυ < 0).

▶ If N(x0
bounce) gets too small, the average singularity

resolution may be spoiled by quantum effects on

geometric and clock variables.
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Cosmic acceleration from QG interaction



Emergent inflation and phantom dark energys
In
te
ra
ct
io
n
s Tensor (modulus) Cellular (phase)

Tr
(m)
Vγl

[φ, φ̄] ∼ (V(m)
γl
, φ̄

(l+1)/2
φ

(l+1)/2)

▶ Highly symmetric, studied in renormalization.
▶ Modulus-only dependence after σ-isotropy.

Tr
(p)
Vγl

[φ, φ̄] ∼ (V(p)
γl
, φ

l+1)

▶ Admit a more clear geometric interpretation.
▶ Modulus&phase dependence after σ-isotropy.

M
o
d
u
lu
s

Phantom Dark Energy(

▶ Consider l = 5 modulus interactions at very late times, but include a subdominant spin υ′:

w = 3 − 2(VV ′′)/(V ′)2 ≃ −1 − b/V , b > 0 .

▶ Universe effectively dominated by (non-pathologic) emergent phantom dark energy.

P
h
a
se

Emergent Inflation

0 = σ̃
′′
υ − 2iπ̃0σ̃

′
υ − E 2

υσ̃υ − λυ ¯̃σ
l
υ

Slow-roll phase Graceful exit and fast oscillations
▶ Initial conditions: l = 5, Re[λυ ¯̃σ

l
υ ] close to

a maximum, θυ determines slow-roll.

▶ Long-lasting quasi-deSitter phase!

▶ Natural slow-roll breakdown: fast oscillations.
▶ Interactions washed away on average.
▶ Graceful exit: matter (clock) dominated phase!

notation: (·, ·) =

∫
d
nΦdga

Ladstätter, LM, Oriti (to appear); Oriti, Pang 2105.03751.
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Inhomogeneities from QG entanglement



Cosmic inhomogeneities from quantum gravity entanglement
yS

et
ti
n
g
y

(ciaoClassical( (ciaoQuantum(

▶ 4 MCMF reference fields (χ0
, χ

i ),

▶ 1 MCMF matter field ϕ dominating the

energy-momentum budget and slightly

relationally inhomogeneous wrt.χi .

▶ Beyond condensates: time- and spacelike tetrahedra.

Inhomogeneities = Quantum Entanglement

|∆; x⟩ = N∆e
σ̂⊗I−+I+⊗τ̂+δ̂Φ⊗I−+δ̂Ψ+I+⊗δ̂Ξ |0⟩ .

E
ff
ec
ti
ve

d
yn

a
m
ic
s

(ciaoClassical dynamics with trans-Planckian QG effects

▶ Matter δϕGFT and “curvature-like” (isotropic)

pert. R̃ emerge from to two-body relational

nearest-neighbor QG correlations (δ̂Φ, δ̂Ψ, δ̂Ξ).

δϕ
′′
GFT + k2a4δϕGFT =

( a2k

Mpl

)
jϕ[ϕ̄] ,

R̃′′
GFT + k2a4R̃GFT =

( a2k

Mpl

)
jR̃[ϕ̄] ,

▶ Trans-Planckian QG corrections to the dynamics

of scalar isotropic perturbations.

✓ Remarkable agreement with GR at larger scales.
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-0.004
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-0.002
-0.001

0.000
0.001
0.002

-0.1

0.0

0.1

0.2

0.3

0.4

Top: R̃GFT (blue) and R̃GR (dashed red) for

k/MPl = 102. Bottom: their difference ∆R̃.

Jercher, LM, Pithis 2310.17549-2308.13261; LM, Oriti 2112.12677; Jercher, Oriti, Pithis 2206.15442; Gielen, Mickel 2211.04500.
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Group Field Theory and spinfoam models
D
efi

n
it
io
n

Group Field Theories: theories of

a field φ : G d → C defined on

d copies of a group manifold G .

d is the dimension of the “spacetime to be”

(d = 4) and G is the local gauge group of gravity,

G = SL(2,C) or, in some cases, G = SU(2).

A
ct
io
n

S[φ, φ̄] =

∫
dgaφ̄(ga)K[φ](ga) +

∑
γ

λγ

nγ
TrVγ [φ] + c.c. .

▶ Interaction terms are combinatorially non-local.

▶ Field arguments convoluted pairwise following the combinatorial

pattern dictated by the graph γ:

TrVγ [φ] =

∫ nγ∏
i=1

dga
∏

(a,i ;b,j)

Vγ(g (i)
a , g

(j)
b )

nγ∏
i=1

φ(g (i)
a ) .

g′4g′3g′2g′1

g1 g2 g3 g4

K y 7

g′9

g′6

g′2

g10

g′10
g′8

g′5
g′1

g1
g2

g3
g4

g′4
g5
g6
g7

g′7
g′3

g′8
g9

V5

P
ar
ti
ti
o
n
fu
n
ct
io
n

Z [φ, φ̄] =
∑
Γ

wΓ({λγ})AΓ

= complete spinfoam model.

▶ Γ = stranded diagrams dual to d-dimensional cellular complexes of arbitrary topology.

▶ Amplitudes AΓ = sums over group theoretic data associated to the cellular complex.

▶ K and Vγ chosen to match the desired spinfoam model.

Oriti 1110.5606; Reisenberger, Rovelli 0002083; De Pietri, Petronio 0004045; Gurau 1006.0714; Baratin, Oriti 1002.4723; Finocchiaro, Oriti 1812.03550.
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Group Field Theory and Loop Quantum Gravity
F
u
n
d
a
m
en

ta
l
q
u
a
n
ta

(ciaoOne-particle Hilbert space(

The one-particle Hilbert space is Htetra ⊂ ⊗4
a=1H∆a (subset defined by the imposition of constraints)

Lie algebra (metric)

H∆a = L2(g)

Lie group (connection)

H∆a = L2(G)

Representation space

H∆a =
⊕

Ja
HJa

(ciaoConstraints(

Geometricity constraints (appropriately encoded in K and Vγ) allow for a

d − 1-simplicial interpretation of the fundamental quanta:

Closure Simplicity∑
a Ba = 0

(faces of the tetrahedron close).

▶ X · (B − γ ⋆ B)a = 0 (EPRL);

▶ X · Ba = 0 (BC).
BgB4Bg

B1

BgB2Bg

B3

•

yL
Q
G
y

▶ Impose simplicity and reduce to G = SU(2).

▶ Impose closure (gauge invariance).

Htetra =
⊕

j⃗ Inv
[⊗4

a=1Hja

]
= open spin-network vertex space

yNon-comm.y

FT

Peter-Weyl

Theorem

Finocchiaro, Oriti 1812.03550; Baez, Barrett 9903060; Baratin, Oriti 1002.4723; Gielen, Oriti 1004.5371; Oriti 1310.7786.
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The Group Field Theory Fock space

Tetrahedron wavefunction

φ(g1, . . . , g4)

(subject to constraints)

GFT field operator

φ̂(g1, . . . , g4)

(subject to constraints)

G
F
T

F
o
ck

sp
a
ce FGFT =

∞⊕
V=0

sym
[
H(1)

tetra ⊗ H(2)
tetra ⊗ . . .H(V )

tetra

]
▶ FGFT generated by action of φ̂†(ga) on |0⟩, with [φ̂(ga), φ̂

†(g ′
a )] = IG (ga, g ′

a ).

▶ HΓ ⊂ FGFT, HΓ space of states associated to connected simplicial complexes Γ.

▶ Generic states do not correspond to connected simplicial lattices nor classical simplicial geometries.

▶ Similar to HLQG but also different: no continuum intuition, orthogonality wrt nodes, not graphs.

O
p
er
a
to
rs Volume operator V̂ =

∫
dg (1)

a dg (2)
a V (g (1)

a , g (2)
a )φ̂†(g (1)

a )φ̂(g (2)
a ) =

∑
ja,ma,ι

Vja,ιφ̂
†
ja,ma,ι

φ̂ja,ma,ι.

▶ Generic second quantization prescription to build a m + n-body operator: sandwich matrix

elements between spin-network states between m powers of φ̂† and n powers of φ̂.

Many-body

Theory

Oriti 1310.7786; Oriti 1408.7112; Sahlman, Sherif 2302.03612.
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Macroscopic cosmological variables and effective relationality

Spatial relational homogeneity:

σ depends on a MCMF “clock” scalar field χ0

(D = minisuperspace + clock)

Collective Observablesp

Number, volume (determined e.g. by the mapping with

LQG) and matter operators (notation: (·, ·) =

∫
dχ

0
dga):

N̂ = (φ̂†
, φ̂) V̂ = (φ̂†

,V [φ̂])

X̂ 0 =
(
φ̂

†
, χ

0
φ̂
)

Π̂
0
= −i(φ̂†

, ∂0φ̂)

▶ Observables ↔ collective operators on Fock space.

Relationality

▶ Averaged evolution wrt x0 is physical:

⟨χ̂0⟩σx0
≡ ⟨X̂ 0⟩σx0

/ ⟨N̂⟩σx0
≃ x0

▶ Emergent effective relational description:
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.

▶ ⟨Ô⟩σx0
= O[σ̃]|χ0=x0 :

functionals of σ̃

localized at x0.

⟨V̂ ⟩σ0
x
=
∑∫

υ

Vυ|σ̃υ|2(x0)

⟨N̂⟩σ0
x
=
∑∫

υ

|σ̃υ|2(x0)

▶ υ = j ∈ N/2 (EPRL);
▶ υ = ρ ∈ R (ext. BC).

Wavefunction

isotropy

Oriti 2008.02774; LM, Oriti 2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Oriti, Pithis 2112.00091.
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Scalar perturbations from quantum correlations
yC

o
lle

ct
iv
e
st
a
te
sy

(ciaoTwo-body correlations(

Including timelike tetrahedra allows to better couple the physical frame: two-sector (+,−) GFT!

|ψ⟩ = Nψ exp(σ̂ ⊗ I− + I+ ⊗ τ̂ + δ̂Φ ⊗ I− + δ̂Ψ + I+ ⊗ δ̂Ξ) |0⟩

Background Perturbations

▶ σ̂ = (σ, φ̂†
+): spacelike condensate.

▶ τ̂ = (τ, φ̂†
−): timelike condensate.

▶ τ , σ peaked; τ̃ , σ̃ homogeneous.

▶ δ̂Φ=(δΦ, φ̂†
+φ̂

†
+), δ̂Ψ=(δΨ, φ̂†

+φ̂
†
−), δ̂Ξ=(δΞ, φ̂†

−φ̂
†
−).

▶ δΦ, δΨ and δΞ small and relationally inhomogeneous.

▶ Perturbations=nearest neighbour 2-body correlations.

E
ff
.
d
yn

a
m
ic
s (ciaoScalar isotropic perturbations

▶ 2 mean-field eqs. for 3 variables (δΦ, δΨ, δΞ):

⟨δS/δφ̂†
+⟩ψ = 0 = ⟨δS/δφ̂†

−⟩
ψ

▶ Late times and single (spacelike) rep. label.

⟨ÔGFT⟩∆;x = ŌGFT(x
0) + δOGFT(x

µ).

▶ Physical behavior of spatial derivative

terms fixes dynamical freedom (e.g. in δΦ).

Jercher, LM, Pithis (to appear); Jercher, Oriti, Pithis 2206.15442.
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