

Emergent Cosmology from Quantum Gravity

A collective effort: D. Oriti, E. Wilson-Ewing, S. Gielen, M. Sakellariadou, A. Pithis, M. de Cesare, A. Polaczek, A. Jercher, A. Calcinari, R. Dekhil, X. Pang, L. Mickel, T. Ladstätter, P. Fischer, ...

Luca Marchetti

COSMO '23 IFT Madrid 14 September 2023

Department of Mathematics and Statistics UNB Fredericton

> Localization problem

Macroscopic description Cosmology

Relationality

The (T)GFT approach to quantum gravity

GFTs are QFTs of atoms of spacetime.

- Take seriously the idea of a microscopic structure of spacetime.
- ► Access to powerful field theoretic methods (Fock space, RG...)!

Oriti 0912.2441; Oriti 1110.5606; Oriti 1408.7112; Krajewski 1210.6257; Oriti 1807.04875; Gielen, Sindoni 1602.08104; ...

The (T)GFT approach to quantum gravity

GFTs are QFTs of atoms of spacetime.

- Take seriously the idea of a microscopic structure of spacetime.
- Access to powerful field theoretic methods (Fock space, RG...)!

Group Field Theory Quanta

- ▶ GFT quanta are atoms of quantum 3-space, i.e. tetrahedra.
- Data associated to a single quantum are field data of a tetrahedron (g_a = gravitational, χ = scalar fields).

Oriti 0912.2441; Oriti 1110.5606; Oriti 1408.7112; Krajewski 1210.6257; Oriti 1807.04875; Gielen, Sindoni 1602.08104; ...

The (T)GFT approach to quantum gravity

GFTs are QFTs of atoms of spacetime.

- Take seriously the idea of a microscopic structure of spacetime.
- Access to powerful field theoretic methods (Fock space, RG...)!

Group Field Theory Quanta

- ▶ GFT quanta are atoms of quantum 3-space, i.e. tetrahedra.
- Data associated to a single quantum are field data of a tetrahedron (g_a = gravitational, χ = scalar fields).

Group Field Theory Processes

- GFT Feynman diagrams (QG processes) are associated with 4d triangulated manifolds.
- ► Z_{GFT} = discrete matter-gravity path-integral.

Oriti 0912.2441; Oriti 1110.5606; Oriti 1408.7112; Krajewski 1210.6257; Oriti 1807.04875; Gielen, Sindoni 1602.08104; ...

GFT quanta

- ▶ GFT quanta are atoms of quantum 3-space, i.e. tetrahedra.
- Data associated to a single quantum are field data of a tetrahedron (g_a = gravitational, χ = scalar fields).

LM, Oriti, Pithis, Thürigen 2211.12768 ; LM, Oriti 2008.02774-2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Oriti, Sindoni 1311.1238.

Collective states

GFT quanta

- ► GFT quanta are atoms of quantum 3-space, i.e. tetrahedra.
- Data associated to a single quantum are field data of a tetrahedron (g_a = gravitational, χ = scalar fields).

GFT condensates

From the GFT perspective, continuum geometries are associated to large number of quanta.
 The simplest states that can accommodate infinite number of quanta are condensate states:

$$|\sigma\rangle = \mathcal{N}_{\sigma} \exp\left[\int \mathrm{d}^{d_{f}} \chi \int \mathrm{d}g_{s} \,\sigma(g_{s},\chi^{lpha})\hat{\varphi}^{\dagger}(g_{s},\chi^{lpha})\right]|0
angle \,.$$

LM, Oriti, Pithis, Thürigen 2211.12768 ; LM, Oriti 2008.02774-2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Oriti, Sindoni 1311.1238.

GFT quanta

- ► GFT quanta are atoms of quantum 3-space, i.e. tetrahedra.
- Data associated to a single quantum are field data of a tetrahedron (g_a = gravitational, χ = scalar fields).

GFT condensates

From the GFT perspective, continuum geometries are associated to large number of quanta.
 The simplest states that can accommodate infinite number of quanta are condensate states:

$$|\sigma\rangle = \mathcal{N}_{\sigma} \exp\left[\int \mathrm{d}^{d_{l}}\chi \int \mathrm{d}g_{a} \,\sigma(g_{a},\chi^{lpha})\hat{\varphi}^{\dagger}(g_{a},\chi^{lpha})\right]|0
angle \,.$$

Macroscopic dynamics from (weakly interacting) mean-field approx. (saddle-point of Z_{GFT}).

LM, Oriti, Pithis, Thürigen 2211.12768 ; LM, Oriti 2008.02774-2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Oriti, Sindoni 1311.1238.

GFT quanta

- GFT quanta are atoms of quantum 3-space, i.e. tetrahedra.
- Data associated to a single quantum are field data of a tetrahedron (g_a = gravitational, χ = scalar fields).

GFT condensates

From the GFT perspective, continuum geometries are associated to large number of quanta.
 The simplest states that can accommodate infinite number of quanta are condensate states:

$$|\sigma\rangle = \mathcal{N}_{\sigma} \exp\left[\int \mathrm{d}^{d_{f}} \chi \int \mathrm{d}g_{s} \,\sigma(g_{s},\chi^{lpha}) \hat{\varphi}^{\dagger}(g_{s},\chi^{lpha})\right] |0\rangle \,.$$

Macroscopic dynamics from (weakly interacting) mean-field approx. (saddle-point of Z_{GFT}). Relational localization implemented at an effective level on observable averages on condensates: $\sigma_x = (\text{fixed peaking function } \eta_x) \times (\text{dynamically determined reduced wavefunction } \tilde{\sigma})$,

 $\langle \hat{\mathcal{O}} \rangle_{\sigma_{\mathrm{st}}} \simeq \mathcal{O}(x)$

LM, Oriti, Pithis, Thürigen 2211.12768 ; LM, Oriti 2008.02774-2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Oriti, Sindoni 1311.1238.

Microscopic description Based on fundamental GFT quanta

Collective states (condensates) Macroscopic description Based on averages of collective observables

Cosmology

Relationality (via peaking)

Modified Friedmann dynamics

LM, Oriti 2008.02774-2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Ladstätter, LM, Oriti (to appear); Oriti, Pang 2105.03751.

Modified Friedmann dynamics

Early times: quantum bounce

- ✓ (Universal, average) Singularity resolution into quantum bounce.
- ✓ Impact of quantum effects on bounce quantified.

Modified Friedmann dynamics

Early times: quantum bounce

- ✓ (Universal, average) Singularity resolution into quantum bounce.
- ✓ Impact of quantum effects on bounce quantified.

Late times: Friedmann dynamics

- (Universal, average) Dynamics compatible with flat FLRW.
- ✓ Classical limit identified (large N).

Modified Friedmann dynamics

Early times: quantum bounce

- (Universal, average) Singularity resolution into quantum bounce.
- ✓ Impact of quantum effects on bounce quantified.
- ▲ Only for MCMF scalar fields: extension to more realistic matter?

Late times: Friedmann dynamics

- ✓ (Universal, average) Dynamics compatible with flat FLRW.
- ✓ Classical limit identified (large N).
- ▲ Only for MCMF scalar fields: extension to more realistic matter?

Modified Friedmann dynamics

Early times: quantum bounce

- (Universal, average) Singularity resolution into quantum bounce.
- Impact of quantum effects on bounce quantified.
- ▲ Only for MCMF scalar fields: extension to more realistic matter?

Late times: Friedmann dynamics

- ✓ (Universal, average) Dynamics compatible with flat FLRW.
- ✓ Classical limit identified (large N).
- ▲ Only for MCMF scalar fields: extension to more realistic matter?

Interacting scalar fields and running couplings

LM, Oriti 2008.02774-2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Ladstätter, LM, Oriti (to appear); Oriti, Pang 2105.03751.

Modified Friedmann dynamics

Early times: quantum bounce

- (Universal, average) Singularity resolution into quantum bounce.
- Impact of quantum effects on bounce quantified.
- ▲ Only for MCMF scalar fields: extension to more realistic matter?

Late times: Friedmann dynamics

- ✓ (Universal, average) Dynamics compatible with flat FLRW.
- ✓ Classical limit identified (large N).
- ▲ Only for MCMF scalar fields: extension to more realistic matter?

Interacting scalar fields and running couplings

✓ Matching with GR requires the macroscopic constants (including G) to run with time.

Modified Friedmann dynamics

Early times: quantum bounce

- (Universal, average) Singularity resolution into quantum bounce.
- Impact of quantum effects on bounce quantified.
- ▲ Only for MCMF scalar fields: extension to more realistic matter?

Late times: Friedmann dynamics

- (Universal, average) Dynamics compatible with flat FLRW.
- ✓ Classical limit identified (large N).
- Only for MCMF scalar fields: extension to more realistic matter?

Interacting scalar fields and running couplings

- ✓ Matching with GR requires the macroscopic constants (including G) to run with time.
- Insights on renormalization?
- Connection with asymptotic safety?

		Modified Friedmann dynamics					
		Early times: quantum bounce		Late times: Friedmann dynamics			
	1	(Universal, average) Singularity resolution into quantum bounce.	1	(Universal, average) Dynamics compatible with flat FLRW.			
	1	Impact of quantum effects on bounce quantified.	1	Classical limit identified (large N).			
	◬	Only for MCMF scalar fields: extension to more		Only for MCMF scalar fields: extension			
		realistic matter?		to more realistic matter?			
	Interacting scalar fields and running couplings						
	1	Matching with GR requires the macroscopic constants (including G) to run with time.		Insights on renormalization? Connection with asymptotic safety?			
		Geometric acceleration from QG interaction	ons				

LM, Oriti 2008.02774-2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Ladstätter, LM, Oriti (to appear); Oriti, Pang 2105.03751.

	Modified Friedmann dynamics	
	Early times: quantum bounce	
~	(Universal, average) Singularity resolution into quantum bounce.	~
1	Impact of quantum effects on bounce quantified.	~
	Only for MCMF scalar fields: extension to more realistic matter?	

Late times: Friedmann dynamics

- (Universal, average) Dynamics compatible with flat FLRW.
- ✓ Classical limit identified (large N).
- Only for MCMF scalar fields: extension to more realistic matter?

Interacting scalar fields and running couplings

- ✓ Matching with GR requires the macroscopic constants (including G) to run with time.
- ▲ Insights on renormalization?
- Connection with asymptotic safety?

Geometric acceleration from QG interactions

Early times: geometric inflation

- ✓ Long lasting acceleration from QG interactions.
- ✓ For some models bottom-up natural and slow-roll.

LM, Oriti 2008.02774-2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Ladstätter, LM, Oriti (to appear); Oriti, Pang 2105.03751.

No interactions

		Modified Friedmann dynamics						
	ons	Early times: quantum bounce	Late times: Friedmann dynamics					
	teracti	 ✓ (Universal, average) Singularity resolution into quantum bounce. 	1	(Universal, average) Dynamics compatible with flat FLRW.				
	. <u></u>	✓ Impact of quantum effects on bounce quantified.	1	Classical limit identified (large N).				
ž		▲ Only for MCMF scalar fields: extension to more realistic matter?		Only for MCMF scalar fields: extension to more realistic matter?				
		Interacting scalar fields and running couplings						
I	su	 Matching with GR requires the macroscopic 		Insights on renormalization?				
I	Ictio	constants (including G) to run with time.		Connection with asymptotic safety?				
ing intera	intera	Geometric acceleration from QG interactions						
	ling	Early times: geometric inflation		Late times: phantom dark energy				
I	Icluc	$\checkmark~$ Long lasting acceleration from QG interactions.	1	Phantom dark energy generated by QG				
1	<u>-</u>	$\checkmark~$ For some models bottom-up natural and slow-roll.		effects (quintessential inflation?).				

LM, Oriti 2008.02774-2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Ladstätter, LM, Oriti (to appear); Oriti, Pang 2105.03751.

			woolfied Friedmann dynamics				
No interactione	ons		Early times: quantum bounce		Late times: Friedmann dynamics		
	teracti	1	(Universal, average) Singularity resolution into quantum bounce.	1	(Universal, average) Dynamics compatible with flat FLRW.		
		1	Impact of quantum effects on bounce quantified.	1	Classical limit identified (large N).		
	ž		Only for MCMF scalar fields: extension to more realistic matter?		Only for MCMF scalar fields: extension to more realistic matter?		
		Interacting scalar fields and running couplings					
us	S	1	Matching with GR requires the macroscopic		Insights on renormalization?		
			constants (including G) to run with time.		Connection with asymptotic safety?		
intera	Intera		Geometric acceleration from QG interaction	ons			
	60 E		Early times: geometric inflation		Late times: phantom dark energy		
		1	Long lasting acceleration from QG interactions.	1	Phantom dark energy generated by QG		
-	Ē	✓ For some models bottom-up natural and slow-roll.			effects (quintessential inflation?).		
			Comparison with observations?		Comparison with observations?		

LM, Oriti 2008.02774-2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Ladstätter, LM, Oriti (to appear); Oriti, Pang 2105.03751.

Luca Marchetti

C 1							
- C 1	2	C	C	÷	0	2	
	а	э	э		L	а	

Setting

- 4 MCMF reference fields (χ^0, χ^i) ,
- 1 MCMF matter field φ dominating e.m. budget and relationally inhomog. wrt. χⁱ.

Quantum

Beyond condensates: time- and spacelike tetrahedra.

Inhomogeneities = quantum entanglement

Jercher, LM, Pithis 2308.13261; Fischer, LM, Oriti (to appear); LM, Oriti 2112.12677; Jercher, Oriti, Pithis 2206.15442; Gielen, Mickel 2211.04500

Classical

- 4 MCMF reference fields (χ^0, χ^i) ,
- 1 MCMF matter field φ dominating e.m. budget and relationally inhomog. wrt. χⁱ.

Quantum

Beyond condensates: time- and spacelike tetrahedra.

Inhomogeneities = quantum entanglement

Late times

Setting

Classical dynamics with trans-Planckian QG effects

Results

- ✓ QG corrections to the dynamics of trans-Planckian scalar isotropic pert.
- ✓ Good GR matching at larger scales.

Jercher, LM, Pithis 2308.13261; Fischer, LM, Oriti (to appear); LM, Oriti 2112.12677; Jercher, Oriti, Pithis 2206.15442; Gielen, Mickel 2211.04500

Classical

- 4 MCMF reference fields (χ^0, χ^i) ,
- 1 MCMF matter field φ dominating e.m. budget and relationally inhomog. wrt. χⁱ.

Quantum

Beyond condensates: time- and spacelike tetrahedra.

Inhomogeneities = quantum entanglement

Late times

Setting

Classical dynamics with trans-Planckian QG effects

Results

- ✓ QG corrections to the dynamics of trans-Planckian scalar isotropic pert.
- ✓ Good GR matching at larger scales.

Work in progress

- A Physical (perhaps observable) consequences of trans-Planckian suppression?
- ▲ EFT/modified gravity description?

Jercher, LM, Pithis 2308.13261; Fischer, LM, Oriti (to appear); LM, Oriti 2112.12677; Jercher, Oriti, Pithis 2206.15442; Gielen, Mickel 2211.04500

Classical

- 4 MCMF reference fields (χ^0, χ^i) .
- 1 MCMF matter field ϕ dominating e.m. budget and relationally inhomog. wrt. χ^{i} .

Quantum

Beyond condensates: time- and spacelike tetrahedra.

Inhomogeneities = quantum entanglement

Late times

Setting

Classical dynamics with trans-Planckian QG effects

Results

- ✓ QG corrections to the dynamics of trans-Planckian scalar isotropic pert.
- ✓ Good GR matching at larger scales.

Super-horizon QG effects

Results

- Volume pert. dynamics differs from MG.
- Full QG volume pert. dynamics differs from QG perturbed background one.

Jercher, LM, Pithis 2308.13261; Fischer, LM, Oriti (to appear); LM, Oriti 2112.12677; Jercher, Oriti, Pithis 2206.15442; Gielen, Mickel 2211.04500

Developments in GFT Cosmology

Work in progress

- A Physical (perhaps observable) consequences of trans-Planckian suppression?
- ▲ EFT/modified gravity description?

Classical

- 4 MCMF reference fields (χ^0, χ^i) ,
- 1 MCMF matter field φ dominating e.m. budget and relationally inhomog. wrt. χⁱ.

Quantum

Beyond condensates: time- and spacelike tetrahedra.

Inhomogeneities = quantum entanglement

Late times

Setting

Classical dynamics with trans-Planckian QG effects

Results

- ✓ QG corrections to the dynamics of trans-Planckian scalar isotropic pert.
- ✓ Good GR matching at larger scales.

Super-horizon QG effects

Results

- ✓ Volume pert. dynamics differs from MG.
- Full QG volume pert. dynamics differs from QG perturbed background one.

Work in progress

- A Physical (perhaps observable) consequences of trans-Planckian suppression?
- ▲ EFT/modified gravity description?

Work in progress

- ▲ Different fundamental d.o.f. → different perturbation dynamics?
- Scalar field perturbations? EFT description?

Jercher, LM, Pithis 2308.13261; Fischer, LM, Oriti (to appear); LM, Oriti 2112.12677; Jercher, Oriti, Pithis 2206.15442; Gielen, Mickel 2211.04500.

Luca Marchetti

More results to come! Stay tuned or (even better) tell us what to look for!