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The relational strategy



Relational strategy: the classical and quantum GR perspective

Background

independence
Problem of

localization
Relational strategy

Quite well understood from a classical perspective, less from a quantum perspective.

QClassicalQ Quantum GR

Physical localization via relational observables:

▶ Take two phase space functions, f and T with

{T ,CH} ̸= 0 (T relational clock).

▶ The relational extension Ff ,T (τ) of f encodes

the value of f when T reads τ .

▶ Evolution in τ is relational.

▶ Ff ,T (τ) is a very complicated function.

▶ Applications almost only for very simple systems.

Dirac approach: Quantize first.

▶ Perspective neutral.

▶ Poor control of the physical Hilbert space.

Reduced approach: Relationality first.

▶ No quantum constraint to solve.

▶ Not perspective neutral. Too complicated to

implement in most of the cases.

Isham 9210011; Rovelli Class. Quantum Grav. 8 297; Dittrich 0507106; Tambornino 1109.0740; Giesel, Thiemann 0711.0119 . . .
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Relational strategy and emergent quantum gravity theories

Background

independence
Problem of

localization
Relational strategy

A genuinely new dimension of the problem arises for emergent QG theories.

Microscopic pre-geo Macroscopic proto-geo

▶ Fundamental d.o.f. are weakly related to

spacetime quantities;

▶ Set of collective

observables;

▶ The latter expected to emerge from the

former in an appropriate phase.

▶ Coarse grained states or

probability distributions.

The quantities whose evolution we want to describe relationally are the

result of a coarse-graining of some fundamental d.o.f.

Effective approaches:
▶ More mathematical control and physical insights.

▶ Relevant for observative purposes.

LM, Oriti 2008.02774; Giulini 0603087; Kuchar Int.J.Mod.Phys.D 20(2011); Isham 9210011; Rovelli Class. Quantum Grav. 8 297;
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Relational strategy

and the GFT Fock space



Relational strategy in GFT: difficulties

The pre-geometric, many-body nature of GFTs hinders the implementation of the relational strategy!

A
n
te

q
u
a
n
tu
m

Classical

Quantum

▶ N classical GFT atoms: C(i)=G d×Rdl .

▶ ith-atom deparametrizable wrt. a clock χ0,(i).

▶ Synchronize the clocks χ0,(i) −→ tN .

▶ Deparametrized N-atoms system: CN =R×ΓN .

▶ Fred=
⊕

N symHN , generated by (φ†
,|0⟩).

▶ But φ, φ† satisfy equal-time (tF ) CCR!

What is tF ? (Certainly, tF ̸= tN !)

P
o
st

q
u
a
n
tu
m

Relational observables?

Open questions

How to construct them without having manifest

access to diffeos?

Simplest ansatz: localize operators wrt. clock data.

N̂ =

∫
dga dχ φ̂

†(ga, χ)φ̂(ga, χ) ,

N̂(χ) =

∫
dga φ̂

†(ga, χ)φ̂(ga, χ) .

A scalar field should be represented as an

operator on FGFT.

χ = χ̂-eigenvalue on “synchronous” states.

▶ How to properly define χ̂?

▶ Extension to generic states and operators?

What is relational time in FGFT?

LM, Oriti 2008.02774; Kotecha, Oriti 1801.09964.
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Effective approaches



Emergent effective relational strategy

A
N
T
E
Q
U
A
N
T
U
M

P
O
S
T

Q
U
A
N
T
U
M

PROTO-GEOMETRIC

PRE-GEOMETRIC

Effective
Relational
Strategy

Basic principles

Emergence Relational strategy in terms of

collective observables and states.

Effectiveness Averaged relational localization.

Internal frame not too quantum.

Concrete example: scalar field clock

Emergence

▶ Identify (collective) states |Ψ⟩ admitting a

continuum proto-geometric interpretation.
▶ Identify a set of collective observables:

Ôa χ̂ Π̂ N̂

Geometric
observables

Scalar field and
its momentum

Number
of quanta

⟨·⟩Ψ ⟨·⟩Ψ ⟨·⟩Ψ

Effectivness

▶ It exists a “Hamiltonian” Ĥ such that

i
d

d ⟨χ̂⟩Ψ
⟨Ôa⟩Ψ = ⟨[Ĥ, Ôa]⟩Ψ ,

and whose moments coincide with those of Π̂.
▶ Relative fluctuations of χ̂ on |Ψ⟩ should be ≪1:

∆2
χ ≪ 1 , ∆2

χ ∼ ⟨N̂⟩−1

Ψ .

LM, Oriti 2008.02774; Bojowald, Hoehn, Tsobanjan 1011.3040; Bojowald, Tsobanjan 0906.1772;
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Coherent Peaked States
yC

o
lle

ct
iv
e
st
a
te
sy

(ciaoGFT coherent states

▶ From the GFT perspective, continuum geometries are associated to large number of quanta.

▶ The simplest states that can accommodate infinite number of quanta are coherent states:

|σ⟩ = Nσ exp

[∫
d
dlχ

∫
dga σ(ga, χ

α)φ̂†(ga, χ
α)

]
|0⟩ .

▶ Assuming σ(ga, ·) = σ(hgah
′
, ·): D = space of spatial geometries + matter at a point.

▶ Dynamics of σ determined by mean-field equations (“hydrodynamic approximation”).

R
el
a
ti
o
n
a
lit
y

Coherent Peaked States(

▶ Constructing relational observables on FGFT is difficult (QFT with no continuum intuition).

▶ Relational localization implemented at an effective level on observable averages.

▶ If χµ constitute a reference frame, this can be achieved by assuming

σ = (fixed peaking function η) × (dynamically determined reduced wavefunction σ̃) .

Peaking cannot be perfect to avoid large clock momentum fluctuations (Heisenberg principle).

▶ σ is a distribution of (discrete) spatial geometries and matter at points xµ in the frame manifold.

LM, Oriti 2008.02774; LM, Oriti 2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Oriti, Sindoni 1311.1238; Gielen 1404.2944.
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Macroscopic cosmological variables and effective relationality
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σ depends on a MCMF “clock” scalar field χ0

yO
b
se
rv
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b
le
sy

Number, volume (determined e.g. by the mapping with

LQG) and matter operators (notation: (·, ·) =

∫
dχ

0
dga):

X̂ 0 =
(
φ̂

†
, χ

0
φ̂
)

V̂ = (φ̂†
,V [φ̂])

Π̂
0
= −i(φ̂†

, ∂0φ̂) N̂ = (φ̂†
, φ̂)

⟨Ô⟩σx0
= O[σ̃]|χ0=x0 : functionals of

σ̃ localized at x0

V ≡ ⟨V̂ ⟩σx0
=
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Vj |σ̃j |2(x0)

N ≡ ⟨N̂⟩σx0
=
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j
|σ̃j |2(x0)

R
el
a
ti
o
n
a
lit
y

Clock expectation values Clock variances
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⟨Π̂0⟩σx0

= ⟨Ĥσ⟩σx0
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1 + const./N(x0)

)

For large N, clock fluctuations scale as N−1:

∆2
σx0
χ
0
<

1

N

(
1 +

ϵ

2(x0)2
1

(1 + δX/N)2

)
∆2
σx0

Π0 = ∆2
σx0

Hσ
(
1 + const./N(x0)
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∆2
σx0

Hσ = ∆2
σx0

N = N−1(x0) .

wavefunction

isotropy
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Classical limit and validity of the framework
E
ff
ec
ti
ve

d
yn

a
m
ic
s

(ciaoMean-field approximation

▶ Mesoscopic regime: large N but negligible interactions.

▶ Derivative expansion of K (due to peaking properties).

▶ Isotropy: σ̃j ≡ ρje
iθj fundamental variables.

σ̃
′′
j − 2iπ̃0σ̃

′
j − E 2

j σ̃ = 0.

Effective volume dynamics

(
V ′

3V

)2

≃

 2
∑

j Vjρj sgn(ρ
′
j )
√

Ej − Q2
j /ρ

2
j + µ2

j ρ
2
j

3
∑

j Vjρ2j


2

,
V ′′

V
≃

2
∑

j Vj

[
Ej + 2µ2

j ρ
2
j

]
∑

j Vjρ2j

C
la
ss
ic
a
l
lim

it

(ciaoLarge number of quanta (large volume and late times) (

Volume quantum fluctuations under control.

▶ If µ2
j is mildly dependent on j (or one j is

dominating) and equal to 3πG

(V ′
/3V )2 ≃ 4πG/3 flat FLRW

x0 = ⟨χ̂0⟩σx0
.

Clock quantum fluctuations negligible.

⟨Π̂0⟩σx0
= ⟨Ĥσ⟩σx0

(higher moments ≃ 0).

Effective relational framework reliable!

LM, Oriti 2008.02774; LM, Oriti 2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881.
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Conclusions



Effective

Approach

Results Perspectives

Definition of an effective relational framework:

Achieved via “synchronized” collective states.

Naturally reliable in the classical limit.

▶ Breaks down when quantum effects are large.

Crucial role of the number operator identified.

▶ Extension to different physical reference frames.

• Technically non-trivial.

• Geometry peaking?

• More geometry/matter observables needed!

▶ Comparison with state-agnostic approach.

What about relational observables in full GFT?
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Relational strategy in full GFT
yQ

u
a
n
tu
m

M
ec
h
a
n
ic
sy Clock POVMs

There cannot exist a self-adjoint (monotonic) T̂ canonically conjugate to a bounded ĤC .

A POVM ÊT : B(G) → LB (H) satisfies

▶ Positivity: ÊT (X ) ≥ 0 ∀X ∈ B(G).

▶ Normalization: ÊT (G) = ÎH.

▶ σ-additivity: ÊT (∪iXi ) =
∑

i ÊT (Xi ).

A time operator is a covariant POVM ÊT wrt. ĤC :

▶ ÊT (X + t) = ÛC (t)ÊX Û
†
C (t), with ÛC ≡ e−i ĤC t .

▶ In the simplest case, ÊT ∝ dt |t⟩ ⟨t|.
▶ T̂ =

∫
tÊT canonically conjugate to ĤC .

LM, Oriti, Wilson-Ewing (in progress).
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A POVM ÊT : B(G) → LB (H) satisfies
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▶ Positivity: ÊT (X ) ≥ 0 ∀X ∈ B(G).

▶ Normalization: ÊT (G) = ÎH.
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G
ro
u
p
F
ie
ld

T
h
eo

ry

Scalar field clock POVMs

Êχ = |0⟩ ⟨0|+dχ
∞∑
n=1

1

n!

∫ [
n∏

i=1

dχi dξi

] ∑n
i=1 δ(χi − χ)

n

[
n∏

i=1

φ̂
†(χi , ξi )

]
|0⟩ ⟨0|

[
n∏

i=1

φ̂(χi , ξi )

]

Positive, normalized and σ-additive.

Êχ is a POVM

Π̂χ-covariant; χ̂ =
∫
χÊχ = intensive scalar field.

Êχ represents a scalar field measurement

Relational observables

〈
Ô(χ,ξ)
χ

〉
ψ

=
〈
{Ô(χ,ξ)

χ , Êχ}
〉
ψ

▶ Is it a sensible definition? Êχ is not a projector!

Compare with previous results when |ψ⟩ = |σ⟩!

LM, Oriti, Wilson-Ewing (in progress).
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χÊχ = intensive scalar field.

Êχ represents a scalar field measurement

Relational observables

〈
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▶ Positivity: ÊT (X ) ≥ 0 ∀X ∈ B(G).

▶ Normalization: ÊT (G) = ÎH.

▶ σ-additivity: ÊT (∪iXi ) =
∑

i ÊT (Xi ).

A time operator is a covariant POVM ÊT wrt. ĤC :

▶ ÊT (X + t) = ÛC (t)ÊX Û
†
C (t), with ÛC ≡ e−i ĤC t .

▶ In the simplest case, ÊT ∝ dt |t⟩ ⟨t|.
▶ T̂ =

∫
tÊT canonically conjugate to ĤC .

G
ro
u
p
F
ie
ld

T
h
eo

ry

Scalar field clock POVMs

Êχ = |0⟩ ⟨0|+dχ
∞∑
n=1

1

n!

∫ [
n∏

i=1

dχi dξi

] ∑n
i=1 δ(χi − χ)

n

[
n∏

i=1

φ̂
†(χi , ξi )

]
|0⟩ ⟨0|

[
n∏

i=1

φ̂(χi , ξi )

]

Positive, normalized and σ-additive.

Êχ is a POVM

Π̂χ-covariant; χ̂ =
∫
χÊχ = intensive scalar field.

Êχ represents a scalar field measurement

Relational observables

〈
Ô(χ,ξ)
χ

〉
ψ

=
〈
{Ô(χ,ξ)

χ , Êχ}
〉
ψ

▶ Is it a sensible definition? Êχ is not a projector!

Compare with previous results when |ψ⟩ = |σ⟩!

LM, Oriti, Wilson-Ewing (in progress).
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U
(1
)
ex

a
m
p
le

Comparison with previous results

〈
Ô(χ,ξ)
χ

〉
σ

= dχ

{
1 − |N|2

∥σ∥

[
O(χ,ξ)(χ) − ⟨Ô(χ,ξ)⟩σ

N(χ)

∥σ∥

]
+ ⟨Ô(χ,ξ)⟩σ

N(χ)

∥σ∥

}
.

▶ N normalization; ∥σ∥ condensate norm;

▶ Ô(χ,ξ) perspective-neutral obs.;

▶ O(χ,ξ)(χ) exp. values of deparametrized obs.;

▶ When ∥σ∥ ≪ 1, ⟨Ô(χ,ξ)
χ ⟩

σ
= dχO(χ,ξ)(χ).

Number: ⟨N̂χ⟩σ = dχN(χ).

Scalar field: ⟨X̂χ⟩σ /N(χ) ∝ dχχ.

Geometry: ⟨Ô(ξ)
χ ⟩

σ
∝ dχO(ξ)(χ) when

∥σ∥ ≫ 1 and single mode (= if symmetric).

LM, Oriti, Wilson-Ewing (in progress).
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Effective

Approach

Results Perspectives

Definition of an effective relational framework:

Achieved via “synchronized” collective states.

Naturally reliable in the classical limit.

▶ Breaks down when quantum effects are large.

Crucial role of the number operator identified.

▶ Extension to different physical reference frames.

• Technically non-trivial.

• Geometry peaking?

• More geometry/matter observables needed!

▶ Comparison with state-agnostic approach.

What about relational observables in full GFT? −→ POVMs!

LM, Oriti 2008.02774; LM, Oriti 2010.09700; 2110.11176; Gielen, LM, Oriti, Polaczek 2110.11176; LM, Wilson-Ewing (to appear)
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Backup



Effective approach for constrained quantum systems

How does our scheme for extraction

of relational cosmological physics

depend on the specific choice of states?

A “state-agnostic”

strategy is needed!

Effective state-agnostic approach for constrained quantum systems

Construction of the effective system Relational description

Step 1: definition of the quantum phase space

▶ Describe the system with exp. values ⟨Âi ⟩ and moments:

▶ Poisson structure inherited from the algebra structure{
⟨Âi ⟩ , ⟨Âj⟩

}
= (iℏ)−1

〈
[Âi , Âj ]

〉
(same for ∆s).

Step 2: definition of the constraints

▶ ⟨Ĉ⟩ = 0 and ⟨(p̂ol − ⟨p̂ol⟩)Ĉ⟩ = 0 eff. constraints;

▶ Generate gauge transf. on the quantum phase space.

Step 3: truncation scheme (e.g. semiclassicality)

Step 1: choose a clock T̂ ([T̂ , P̂] closes)

Step 2: gauge fixing
▶ At 1st order: ∆(TAi ) = 0, Ai ∈ A\{P̂}.
▶ Use constraints to eliminate P̂-variables.

Step 3: relational rewriting

▶ Determine the remaining gauge flow

which preserves the gauge conditions.

▶ Write evolution of the remaining

variables wrt. T (classical clock).

LM, Gielen, Oriti, Polaczek 2110.11176; Bojowald, Sandhoefer, Skirzewski, Tsobanjan 0804.3365; Bojowald Tsobanjan 0906.1772.
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[Âi , Âj ]
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[Âi , Âj ]
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⟨Âi ⟩ , ⟨Âj⟩
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A state agnostic approach: application to GFT

How can this framework be generalized to a field theory context?

Infinitely many algebra generators. Infinitely many quantum constraints.

Additional truncation scheme

Motivations Coarse-graining truncation

▶ Interest in a coarse grained system

characterized by a small number of

macroscopic (1-body) observables.

▶ Expected to be the case for cosmology.

▶ When the e.o.m. are linear, consider an

integrated 1-body quantum constraint.

▶ Algebra generated by minimal set of physically

relevant operators (including constraint).

S
et
ti
n
g

(ciaoGFT with MCMF scalar field (

▶ Free e.o.m.: Dφ ≡ (m2 + ℏ2∆g + λℏ2
∂
2
χ)φ = 0.

▶ Quantum constr. Ĉ =
∫
φ̂†Dφ̂ = m2N̂ − Λ̂ − λΠ̂2.

▶ Generators: X̂ , Π̂, Π̂2, N̂, Λ̂ and K̂ .

▶ K̂ such that [Λ̂, K̂ ] = iℏαK̂ .

g
R
es
u
lt
sg

(ciaoExpectation values and variances

▶ The procedure can naturally be carried

over by choosing as clock variable K̂ .

▶ Relational evolution of ⟨X̂⟩ in agreement

with classical cosmology.

▶ Fluctuations are decoupled from expect. values.

▶ If they are small at small ⟨K̂⟩ they stay small

even at large ⟨K̂⟩ (probably associated to a

constant ⟨N̂⟩).

LM, Gielen, Oriti, Polaczek 2110.11176.
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∫
φ̂†Dφ̂ = m2N̂ − Λ̂ − λΠ̂2.

▶ Generators: X̂ , Π̂, Π̂2, N̂, Λ̂ and K̂ .

▶ K̂ such that [Λ̂, K̂ ] = iℏαK̂ .

g
R
es
u
lt
sg

(ciaoExpectation values and variances

▶ The procedure can naturally be carried

over by choosing as clock variable K̂ .

▶ Relational evolution of ⟨X̂⟩ in agreement

with classical cosmology.

▶ Fluctuations are decoupled from expect. values.

▶ If they are small at small ⟨K̂⟩ they stay small

even at large ⟨K̂⟩ (probably associated to a

constant ⟨N̂⟩).

LM, Gielen, Oriti, Polaczek 2110.11176.

Luca Marchetti Relational physics in GFTs



A state agnostic approach: application to GFT

How can this framework be generalized to a field theory context?

Infinitely many algebra generators. Infinitely many quantum constraints.

Additional truncation scheme

Motivations Coarse-graining truncation

▶ Interest in a coarse grained system

characterized by a small number of

macroscopic (1-body) observables.

▶ Expected to be the case for cosmology.

▶ When the e.o.m. are linear, consider an

integrated 1-body quantum constraint.

▶ Algebra generated by minimal set of physically

relevant operators (including constraint).
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(ciaoGFT with MCMF scalar field (

▶ Free e.o.m.: Dφ ≡ (m2 + ℏ2∆g + λℏ2
∂
2
χ)φ = 0.

▶ Quantum constr. Ĉ =
∫
φ̂†Dφ̂ = m2N̂ − Λ̂ − λΠ̂2.

▶ Generators: X̂ , Π̂, Π̂2, N̂, Λ̂ and K̂ .

▶ K̂ such that [Λ̂, K̂ ] = iℏαK̂ .
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▶ The procedure can naturally be carried

over by choosing as clock variable K̂ .

▶ Relational evolution of ⟨X̂⟩ in agreement

with classical cosmology.

▶ Fluctuations are decoupled from expect. values.

▶ If they are small at small ⟨K̂⟩ they stay small

even at large ⟨K̂⟩ (probably associated to a

constant ⟨N̂⟩).
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