

Relational physics in Group Field Theories

Luca Marchetti

GFT Cosmology Workshop ASC München 6 September 2023

Department of Mathematics and Statistics UNB Fredericton

Overview

• The relational strategy

- The classical and quantum perspectives
- The emergent perspective and effective methods
- Relational strategy and GFTs

• Effective approaches

- General considerations
- Coherent Peaked States

Conclusions

The relational strategy

Quite well understood from a classical perspective, less from a quantum perspective.

Isham 9210011; Rovelli Class. Quantum Grav. 8 297; Dittrich 0507106; Tambornino 1109.0740; Giesel, Thiemann 0711.0119 ...

Quite well understood from a classical perspective, less from a quantum perspective.

- Evolution in τ is relational.
- F_{f,T}(τ) is a very complicated function.
- Applications almost only for very simple systems.

Isham 9210011; Rovelli Class. Quantum Grav. 8 297; Dittrich 0507106; Tambornino 1109.0740; Giesel, Thiemann 0711.0119 ...

Quite well understood from a classical perspective, less from a guantum perspective.

- Perspective neutral.
- Poor control of the physical Hilbert space.

- ▶ Take two phase space functions, f and T with $\{T, C_H\} \neq 0$ (T relational clock).
- The relational extension $F_{f,T}(\tau)$ of f encodes the value of f when T reads τ .
- Evolution in τ is relational.
- $F_{f,T}(\tau)$ is a very complicated function.
- Applications almost only for very simple systems. ►

Isham 9210011: Rovelli Class, Quantum Grav. 8 297: Dittrich 0507106: Tambornino 1109.0740: Giesel, Thiemann 0711.0119

Quite well understood from a classical perspective, less from a quantum perspective.

Physical localization via relational observables:

- ► Take two phase space functions, f and T with $\{T, C_H\} \neq 0$ (T relational clock).
- The relational extension $F_{f,T}(\tau)$ of f encodes the value of f when T reads τ .
- Evolution in \(\tau\) is relational.
- *F_{f,T}*(τ) is a very complicated function.
- Applications almost only for very simple systems.

Quantum GR

Dirac approach: Quantize first.

- Perspective neutral.
- Poor control of the physical Hilbert space.

Reduced approach: Relationality first.

- No quantum constraint to solve.
- Not perspective neutral. Too complicated to implement in most of the cases.

Isham 9210011; Rovelli Class. Quantum Grav. 8 297; Dittrich 0507106; Tambornino 1109.0740; Giesel, Thiemann 0711.0119 ...

Luca Marchetti

A genuinely new dimension of the problem arises for emergent QG theories.

LM, Oriti 2008.02774; Giulini 0603087; Kuchar Int.J.Mod.Phys.D 20(2011); Isham 9210011; Rovelli Class. Quantum Grav. 8 297;

LM, Oriti 2008.02774; Giulini 0603087; Kuchar Int.J.Mod.Phys.D 20(2011); Isham 9210011; Rovelli Class. Quantum Grav. 8 297;

result of a coarse-graining of some fundamental d.o.f.

LM, Oriti 2008.02774; Giulini 0603087; Kuchar Int.J.Mod.Phys.D 20(2011); Isham 9210011; Rovelli Class. Quantum Grav. 8 297;

LM, Oriti 2008.02774; Giulini 0603087; Kuchar Int.J.Mod.Phys.D 20(2011); Isham 9210011; Rovelli Class. Quantum Grav. 8 297;

Luca Marchetti

Relational strategy and the GFT Fock space

LM, Oriti 2008.02774; Kotecha, Oriti 1801.09964.

Quantum

- ▶ $\mathcal{F}_{red} = \bigoplus_{N} sym \mathcal{H}_{N}$, generated by $(\varphi^{\dagger}, |0\rangle)$.
- But φ , φ^{\dagger} satisfy equal-time (t_F) CCR!

LM, Oriti 2008.02774; Kotecha, Oriti 1801.09964.

access to diffeos?

Simplest ansatz: localize operators wrt. clock data.

$$\hat{N} = \int \mathrm{d}g_{\mathfrak{s}} \,\mathrm{d}\chi \,\hat{\varphi}^{\dagger}(g_{\mathfrak{s}},\chi)\hat{\varphi}(g_{\mathfrak{s}},\chi) \,, \\ \hat{N}(\chi) = \int \mathrm{d}g_{\mathfrak{s}} \,\hat{\varphi}^{\dagger}(g_{\mathfrak{s}},\chi)\hat{\varphi}(g_{\mathfrak{s}},\chi) \,.$$

Quantum

- ▶ $\mathcal{F}_{red} = \bigoplus_{N} sym \mathcal{H}_{N}$, generated by $(\varphi^{\dagger}, |0\rangle)$.
- But φ , φ^{\dagger} satisfy equal-time (t_F) CCR!

What is t_F ? (Certainly, $t_F \neq t_N$!)

LM, Oriti 2008.02774; Kotecha, Oriti 1801.09964

Luca Marchetti

LM, Oriti 2008.02774; Kotecha, Oriti 1801.09964.

Luca Marchetti

LM, Oriti 2008.02774; Kotecha, Oriti 1801.09964.

Luca Marchetti

Relational strategy in GFT: difficulties

The pre-geometric, many-body nature of GFTs hinders the implementation of the relational strategy!

Classical

- *N* classical GFT atoms: $C^{(i)} = G^d \times \mathbb{R}^{d_l}$.
- *i*th-atom deparametrizable wrt. a clock $\chi^{0,(i)}$.
- Synchronize the clocks $\chi^{0,(i)} \longrightarrow t_N$.
- Deparametrized *N*-atoms system: $C_N = \mathbb{R} \times \Gamma_N$.

Relational observables?

How to construct them without having manifest access to diffeos?

Simplest ansatz: localize operators wrt. clock data.

$$\hat{N} = \int \mathrm{d}g_{\mathfrak{s}} \,\mathrm{d}\chi \,\hat{\varphi}^{\dagger}(g_{\mathfrak{s}},\chi)\hat{\varphi}(g_{\mathfrak{s}},\chi) \,, \\ \hat{N}(\chi) = \int \mathrm{d}g_{\mathfrak{s}} \,\hat{\varphi}^{\dagger}(g_{\mathfrak{s}},\chi)\hat{\varphi}(g_{\mathfrak{s}},\chi) \,.$$

Quantum

- ▶ $\mathcal{F}_{red} = \bigoplus_{N} \operatorname{sym} \mathcal{H}_{N}$, generated by $(\varphi^{\dagger}, |0\rangle)$.
- But φ , φ^{\dagger} satisfy equal-time (t_F) CCR!

What is t_F ? (Certainly, $t_F \neq t_N$!)

Open questions

A scalar field should be represented as an operator on $\mathcal{F}_{\text{GFT}}.$

- $\chi=\hat{\chi}\text{-eigenvalue}$ on "synchronous" states.
- Extension to generic states and operators?

What is relational time in \mathcal{F}_{GFT} ?

LM, Oriti 2008.02774; Kotecha, Oriti 1801.09964

Luca Marchetti

Ante quantum

Effective approaches

Emergent effective relational strategy

PROTO-GEOMETRIC

Emergence Relational strategy in terms of collective observables and states.

Effectiveness Averaged relational localization. Internal frame not too quantum.

LM, Oriti 2008.02774; Bojowald, Hoehn, Tsobanjan 1011.3040; Bojowald, Tsobanjan 0906.1772;

Emergent effective relational strategy

PROTO-GEOMETRIC POST QUANTUM ANTE QUANTUM PRE-GEOMETRIC **Basic principles** Emergence Relational strategy in terms of collective observables and states.

Effectiveness Averaged relational localization. Internal frame not too quantum. Concrete example: scalar field clock

Emergence

- Identify (collective) states |Ψ⟩ admitting a continuum proto-geometric interpretation.
- Identify a set of collective observables:

LM, Oriti 2008.02774; Bojowald, Hoehn, Tsobanjan 1011.3040; Bojowald, Tsobanjan 0906.1772;

Emergent effective relational strategy

PROTO-GEOMETRIC POST QUANTUM ANTE QUANTUM PRE-GEOMETRIC Basic principles Emergence Relational strategy in terms of collective observables and states. Effectiveness Averaged relational localization. Internal frame not too quantum.

Concrete example: scalar field clock

Emergence

- Identify (collective) states |Ψ⟩ admitting a continuum proto-geometric interpretation.
- Identify a set of collective observables:

Effectivness

It exists a "Hamiltonian" Â such that

$$i \frac{\mathrm{d}}{\mathrm{d} \langle \hat{\chi} \rangle_{\Psi}} \langle \hat{O}_a \rangle_{\Psi} = \langle [\hat{H}, \hat{O}_a] \rangle_{\Psi} \, ,$$

and whose moments coincide with those of $\hat{\Pi}.$

 $\begin{array}{ll} \blacktriangleright \mbox{ Relative fluctuations of } \hat{\chi} \mbox{ on } |\Psi\rangle \mbox{ should be } \ll 1 {:} \\ \Delta^2 \chi \ll 1 \, , \qquad \Delta^2 \chi \sim \langle \hat{N} \rangle_{\Psi}^{-1} \, . \end{array}$

LM, Oriti 2008.02774; Bojowald, Hoehn, Tsobanjan 1011.3040; Bojowald, Tsobanjan 0906.1772;

Luca Marchetti

Coherent Peaked States

From the GFT perspective, continuum geometries are associated to large number of quanta.
 The simplest states that can accommodate infinite number of quanta are coherent states:

$$|\sigma
angle = \mathcal{N}_{\sigma} \exp\left[\int \mathrm{d}^{d_{l}}\chi \int \mathrm{d}g_{s} \,\sigma(g_{s},\chi^{lpha})\hat{\varphi}^{\dagger}(g_{s},\chi^{lpha})
ight]|0
angle$$

Assuming $\sigma(g_a, \cdot) = \sigma(hg_ah', \cdot)$: \mathcal{D} = space of spatial geometries + matter at a point.

Dynamics of σ determined by mean-field equations ("hydrodynamic approximation").

Coherent Peaked States

Constructing relational observables on F_{GFT} is difficult (QFT with no continuum intuition).

Relational localization implemented at an effective level on observable averages.

LM, Oriti 2008.02774; LM, Oriti 2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Oriti, Sindoni 1311.1238; Gielen 1404.2944

Collective states

From the GFT perspective, continuum geometries are associated to large number of quanta.
 The simplest states that can accommodate infinite number of quanta are coherent states:

$$|\sigma
angle = \mathcal{N}_{\sigma} \exp\left[\int \mathrm{d}^{d_{l}}\chi \int \mathrm{d}g_{s} \,\sigma(g_{s},\chi^{lpha})\hat{\varphi}^{\dagger}(g_{s},\chi^{lpha})
ight]|0
angle$$

Assuming $\sigma(g_a, \cdot) = \sigma(hg_ah', \cdot)$: \mathcal{D} = space of spatial geometries + matter at a point.

Dynamics of σ determined by mean-field equations ("hydrodynamic approximation").

Coherent Peaked States

Constructing relational observables on F_{GFT} is difficult (QFT with no continuum intuition).

Relational localization implemented at an effective level on observable averages.

- If χ^μ constitute a reference frame, this can be achieved by assuming

 $\sigma = (\text{fixed peaking function } \eta) \times (\text{dynamically determined reduced wavefunction } \tilde{\sigma}).$ Peaking cannot be perfect to avoid large clock momentum fluctuations (Heisenberg principle).

LM, Oriti 2008.02774; LM, Oriti 2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Oriti, Sindoni 1311.1238; Gielen 1404.2944.

Collective states

GFT coherent states

From the GFT perspective, continuum geometries are associated to large number of quanta.
 The simplest states that can accommodate infinite number of quanta are coherent states:

$$|\sigma
angle = \mathcal{N}_{\sigma} \exp\left[\int \mathrm{d}^{d_{l}}\chi \int \mathrm{d}g_{s} \,\sigma(g_{s},\chi^{lpha})\hat{\varphi}^{\dagger}(g_{s},\chi^{lpha})
ight]|0
angle$$

Assuming $\sigma(g_a, \cdot) = \sigma(hg_ah', \cdot)$: \mathcal{D} = space of spatial geometries + matter at a point.

Dynamics of σ determined by mean-field equations ("hydrodynamic approximation").

Coherent Peaked States

Constructing relational observables on F_{GFT} is difficult (QFT with no continuum intuition).

Relational localization implemented at an effective level on observable averages.

• If χ^{μ} constitute a reference frame, this can be achieved by assuming

 $\sigma = (\text{fixed peaking function } \eta) \times (\text{dynamically determined reduced wavefunction } \tilde{\sigma}).$ Peaking cannot be perfect to avoid large clock momentum fluctuations (Heisenberg principle). σ is a distribution of (discrete) spatial geometries and matter at points x^{μ} in the frame manifold.

LM, Oriti 2008.02774; LM, Oriti 2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Oriti, Sindoni 1311.1238; Gielen 1404.2944.

Collective states

Spatial relational homogeneity: σ depends on a MCMF "clock" scalar field $\chi^{\rm 0}$

LM, Oriti 2008.02774 ; LM, Oriti 2010.09700.

Luca Marchetti

Spatial relational homogeneity:

 σ depends on a MCMF "clock" scalar field $\chi^{\rm 0}$

Number, volume (determined e.g. by the mapping with LQG) and matter operators (notation: $(\cdot, \cdot) = \int d\chi^0 dg_a$):

$\hat{\pmb{X}}^{0}=\left(\hat{arphi}^{\dagger},\chi^{0}\hat{arphi} ight)$	$\hat{oldsymbol{V}}=(\hat{arphi}^{\dagger},V[\hat{arphi}])$
$\hat{\pmb{\Pi}}^0 = -i(\hat{arphi}^\dagger,\partial_0\hat{arphi})$	$\hat{\pmb{N}}=(\hat{arphi}^{\dagger},\hat{arphi})$

Observables

LM, Oriti 2008.02774 ; LM, Oriti 2010.09700.

Luca Marchetti

Spatial relational homogeneity: σ depends on a MCMF "clock" scalar field χ^0

Observables

Number, volume (determined e.g. by the mapping with LQG) and matter operators (notation: $(\cdot, \cdot) = \int dx^0 dg_a$): $\hat{\chi}^0 = (\hat{\varphi}^{\dagger}, \chi^0 \hat{\varphi})$ $\hat{V} = (\hat{\varphi}^{\dagger}, V[\hat{\varphi}])$ wavefunction $V \equiv \langle \hat{V} \rangle_{\sigma, \delta} = \sum_i V_j |\tilde{\sigma}_j|^2 (x^0)$

$$\hat{\Pi}^{0} = -i(\hat{\varphi}^{\dagger}, \partial_{0}\hat{\varphi}) \qquad \hat{N} = (\hat{\varphi}^{\dagger}, \hat{\varphi}) \qquad \stackrel{\text{instransitive}}{\text{isotropy}} N \equiv \langle \hat{N} \rangle_{\sigma_{X^{0}}} = \sum_{j} |\tilde{\sigma}_{j}|^{2} (x^{0})$$

LM, Oriti 2008.02774 ; LM, Oriti 2010.09700.

Spatial relational homogeneity: σ depends on a MCMF "clock" scalar field χ^0

Relationality

er, volume (determined e and matter operators (not	e.g. by the mapping tation: $(\cdot, \cdot) = \int d\chi^0 dg$	g with 〈 ᠭa):	$egin{array}{l} \langle \hat{O} angle_{\sigma_{\chi^0}} = O[ilde{\sigma}] _{\chi^0 = x^0} \colon { m functionals} \; { m of} \; \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$\hat{\pmb{X}}^{0}=\left(\hat{arphi}^{\dagger},\chi^{0}\hat{arphi} ight)$	$\hat{\pmb{V}}=(\hat{arphi}^{\dagger},\pmb{V}[\hat{arphi}])$	wavefunction	$V \equiv \langle \hat{V} \rangle_{\sigma_{\chi^0}} = \sum_j V_j \tilde{\sigma}_j ^2 (x^0)$
$\hat{\Pi}^{0}=-i(\hat{arphi}^{\dagger},\partial_{0}\hat{arphi})$	$\hat{\pmb{N}}=(\hat{arphi}^{\dagger},\hat{arphi})$	isotropy	$N\equiv \langle \hat{N} angle_{\sigma_{X^0}}=\sum_j ilde{\sigma}_j ^2(x^0)$

Clock expectation values

Number, volume (determined e.g. by the mapping with

LQG) and matter operators (notation: $(\cdot, \cdot) = \int d\chi^0 dg_a$):

For large N, x^0 has a clear physical meaning:

$$\begin{split} \langle \hat{\chi}^{\circ} \rangle_{\sigma_{\chi^{0}}} &\equiv \langle X^{\circ} \rangle_{\sigma_{\chi^{0}}} / N \quad (intensive) \\ &= x^{0} \left(1 + \delta X(x^{0}) / N(x^{0}) \right) \\ \langle \hat{\Pi}^{0} \rangle_{\sigma_{\chi^{0}}} &= \langle \hat{H}_{\sigma} \rangle_{\sigma_{\chi^{0}}} \left(1 + \text{const.} / N(x^{0}) \right) \end{split}$$

Clock variances

For large N, clock fluctuations scale as N^{-1} : $\Delta_{\sigma_{X^0}}^2 \chi^0 < \frac{1}{N} \left(1 + \frac{\epsilon}{2(x^0)^2} \frac{1}{(1 + \delta X/N)^2} \right)$ $\Delta_{\sigma_{v^0}}^2 \Pi^0 = \Delta_{\sigma_{v^0}}^2 H_\sigma \left(1 + \text{const.} / N(x^0) \right)$ $\Delta_{\sigma}^2 H_{\sigma} = \Delta_{\sigma}^2 N = N^{-1}(x^0).$

LM. Oriti 2008.02774 : LM. Oriti 2010.09700.

Luca Marchetti

Mean-field approximation

- ▶ Mesoscopic regime: large *N* but negligible interactions.
- Derivative expansion of K (due to peaking properties).
- Isotropy: $\tilde{\sigma}_j \equiv \rho_j e^{i\theta_j}$ fundamental variables.

 $\tilde{\sigma}_i^{\prime\prime} - 2i\tilde{\pi}_0\tilde{\sigma}_i^\prime - E_i^2\tilde{\sigma} = 0.$

Mean-field approximation

- ▶ Mesoscopic regime: large *N* but negligible interactions.
- Derivative expansion of \mathcal{K} (due to peaking properties).
- Isotropy: $\tilde{\sigma}_j \equiv \rho_j e^{i\theta_j}$ fundamental variables.

$${\check{\sigma}}_{j}^{\prime\prime}-2i{\tilde{\pi}}_{0}{\check{\sigma}}_{j}^{\prime}-E_{j}^{2}{\check{\sigma}}=0.$$

i

$$\left(\frac{V'}{3V}\right)^{2} \simeq \left(\frac{2\sum_{j}V_{j}\rho_{j}\operatorname{sgn}(\rho_{j}')\sqrt{\varepsilon_{j}-Q_{j}^{2}/\rho_{j}^{2}+\mu_{j}^{2}\rho_{j}^{2}}}{3\sum_{j}V_{j}\rho_{j}^{2}}\right)^{2}, \quad \frac{V''}{V} \simeq \frac{2\sum_{j}V_{j}\left[\varepsilon_{j}+2\mu_{j}^{2}\rho_{j}^{2}\right]}{\sum_{j}V_{j}\rho_{j}^{2}}$$

LM, Oriti 2008.02774; LM, Oriti 2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881.

Mean-field approximation

- Mesoscopic regime: large N but negligible interactions.
- Derivative expansion of \mathcal{K} (due to peaking properties).
- Isotropy: $\tilde{\sigma}_j \equiv \rho_j e^{i\theta_j}$ fundamental variables.

$$\tilde{\sigma}_{j}^{\prime\prime}-2i\tilde{\pi}_{0}\tilde{\sigma}_{j}^{\prime}-E_{j}^{2}\tilde{\sigma}=0.$$

i

$$\left(\frac{V'}{3V}\right)^2 \simeq \left(\frac{2\sum_j V_j \rho_j \operatorname{sgn}(\rho_j') \sqrt{\mathcal{E}_j - \mathcal{Q}_j^2 / \rho_j^2 + \mu_j^2 \rho_j^2}}{3\sum_j V_j \rho_j^2}\right)^2, \quad \frac{V''}{V} \simeq \frac{2\sum_j V_j \left[\mathcal{E}_j + 2\mu_j^2 \rho_j^2\right]}{\sum_j V_j \rho_j^2}$$

Large number of quanta (large volume and late times)

- ✓ Volume quantum fluctuations under control.
- If μ_j² is mildly dependent on j (or one j is dominating) and equal to 3πG

$$(V'/3V)^2 \simeq 4\pi G/3 \longrightarrow \text{flat FLRW}$$

LM, Oriti 2008.02774; LM, Oriti 2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881.

Classical limit

Mean-field approximation

- Mesoscopic regime: large N but negligible interactions.
- Derivative expansion of \mathcal{K} (due to peaking properties).
- Isotropy: $\tilde{\sigma}_j \equiv \rho_j e^{i\theta_j}$ fundamental variables.

$${\check{\sigma}}_{j}^{\prime\prime}-2i{\tilde{\pi}}_{0}{\check{\sigma}}_{j}^{\prime}-E_{j}^{2}{\check{\sigma}}=0.$$

$$\left(\frac{V'}{3V}\right)^2 \simeq \left(\frac{2\sum_j V_j \rho_j \operatorname{sgn}(\rho_j') \sqrt{\mathcal{E}_j - \mathcal{Q}_j^2 / \rho_j^2 + \mu_j^2 \rho_j^2}}{3\sum_j V_j \rho_j^2}\right)^2, \quad \frac{V''}{V} \simeq \frac{2\sum_j V_j \left[\mathcal{E}_j + 2\mu_j^2 \rho_j^2\right]}{\sum_j V_j \rho_j^2}$$

Large number of quanta (large volume and late times)

- ✓ Volume quantum fluctuations under control.
- If μ_j² is mildly dependent on j (or one j is dominating) and equal to 3πG

 $(V'/3V)^2 \simeq 4\pi G/3 \longrightarrow \text{flat FLRW}$

$$\begin{split} &\checkmark \ x^0 = \langle \hat{\chi}^0 \rangle_{\sigma_{\chi^0}} \\ &\checkmark \ \text{Clock quantum fluctuations negligible.} \\ &\checkmark \ \langle \hat{\Pi}^0 \rangle_{\sigma_{\gamma^0}} = \langle \hat{H}_{\sigma} \rangle_{\sigma_{\gamma^0}} \ \text{(higher moments } \simeq 0 \end{split}$$

Effective relational framework reliable!

LM, Oriti 2008.02774; LM, Oriti 2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881.

Classical limit

Conclusions

- ✓ Definition of an effective relational framework:
 - ✓ Achieved via "synchronized" collective states.
 - ✓ Naturally reliable in the classical limit.
 - Breaks down when quantum effects are large.
- Crucial role of the number operator identified.

LM, Oriti 2008.02774; LM, Oriti 2010.09700; 2110.11176;

Luca Marchetti

- ✓ Definition of an effective relational framework:
 - ✓ Achieved via "synchronized" collective states.
 - ✓ Naturally reliable in the classical limit.
 - Breaks down when quantum effects are large.
- Crucial role of the number operator identified.

- Extension to different physical reference frames.
 - Technically non-trivial.
 - Geometry peaking?
 - More geometry/matter observables needed!
- Comparison with state-agnostic approach.

LM, Oriti 2008.02774; LM, Oriti 2010.09700; 2110.11176; Gielen, LM, Oriti, Polaczek 2110.11176.

Luca Marchetti

- ✓ Definition of an effective relational framework:
 - ✓ Achieved via "synchronized" collective states.
 - ✓ Naturally reliable in the classical limit.
 - Breaks down when quantum effects are large.
- ✓ Crucial role of the number operator identified.

- Extension to different physical reference frames.
 - Technically non-trivial.
 - Geometry peaking?
 - More geometry/matter observables needed!
- Comparison with state-agnostic approach.

What about relational observables in full GFT?

GFTs: pre-geometric many-body

Luca Marchetti

Quantum Mechanics

Clock POVMs

There cannot exist a self-adjoint (monotonic) \hat{T} canonically conjugate to a bounded \hat{H}_{C} .

LM, Oriti, Wilson-Ewing (in progress).

Luca Marchetti

Clock POVMs

There cannot exist a self-adjoint (monotonic) \hat{T} canonically conjugate to a bounded \hat{H}_{C} .

- A POVM $\hat{E}_T : \mathcal{B}(G) \to \mathcal{L}_B(\mathcal{H})$ satisfies
- ▶ Positivity: $\hat{E}_T(X) \ge 0 \ \forall X \in \mathcal{B}(G).$
- Normalization: $\hat{E}_T(G) = \hat{\mathbb{I}}_H$.
- σ -additivity: $\hat{E}_T(\cup_i X_i) = \sum_i \hat{E}_T(X_i)$.

Quantum Mechanics

There cannot exist a self-adjoint (monotonic) \hat{T} canonically conjugate to a bounded \hat{H}_{C} .

- A POVM $\hat{E}_{\mathcal{T}}:\mathcal{B}(\mathcal{G})
 ightarrow\mathcal{L}_{\mathcal{B}}(\mathcal{H})$ satisfies
- Positivity: $\hat{E}_T(X) \ge 0 \ \forall X \in \mathcal{B}(G)$.
- Normalization: $\hat{E}_T(G) = \hat{\mathbb{I}}_H$.

Clock POVMs

• σ -additivity: $\hat{E}_T(\cup_i X_i) = \sum_i \hat{E}_T(X_i)$.

A time operator is a covariant POVM \hat{E}_T wrt. \hat{H}_C :

- $\hat{E}_T(X+t) = \hat{U}_C(t)\hat{E}_X\hat{U}_C^{\dagger}(t)$, with $\hat{U}_C \equiv e^{-i\hat{H}_C t}$.
- In the simplest case, $\hat{E}_T \propto dt |t\rangle \langle t|$.
- $\hat{T} = \int t \hat{E}_T$ canonically conjugate to \hat{H}_C .

Clock POVMs

There cannot exist a self-adjoint (monotonic) \hat{T} canonically conjugate to a bounded \hat{H}_{C} .

- Positivity: $\hat{E}_T(X) > 0 \ \forall X \in \mathcal{B}(G).$
- Normalization: $\hat{E}_T(G) = \hat{\mathbb{I}}_{\mathcal{H}}$.

A POVM $\hat{E}_T : \mathcal{B}(G) \to \mathcal{L}_{\mathcal{B}}(\mathcal{H})$ satisfies A time operator is a covariant POVM \hat{E}_T wrt. $\hat{\mathcal{H}}_C$:

- $\hat{E}_T(X+t) = \hat{U}_C(t)\hat{E}_X\hat{U}_C^{\dagger}(t)$, with $\hat{U}_C \equiv e^{-i\hat{H}_C t}$.
- In the simplest case, $\hat{E}_T \propto dt |t\rangle \langle t|$.
- σ -additivity: $\hat{E}_T(\bigcup_i X_i) = \sum_i \hat{E}_T(X_i)$. $\blacktriangleright \hat{T} = \int t \hat{E}_T$ canonically conjugate to \hat{H}_C .

Scalar field clock POVMs

$$\hat{\xi}_{\chi} = |0\rangle \langle 0| + \mathrm{d}\chi \sum_{n=1}^{\infty} \frac{1}{n!} \int \left[\prod_{i=1}^{n} \mathrm{d}\chi_{i} \, \mathrm{d}\xi_{i}\right] \frac{\sum_{i=1}^{n} \delta(\chi_{i} - \chi)}{n} \left[\prod_{i=1}^{n} \hat{\varphi}^{\dagger}(\chi_{i}, \xi_{i})\right] |0\rangle \langle 0| \left[\prod_{i=1}^{n} \hat{\varphi}(\chi_{i}, \xi_{i})\right]$$

Quantum Mechanics

LM, Oriti, Wilson-Ewing (in progress)

Luca Marchetti

Clock POVMs

Quantum Mechanics

There cannot exist a self-adjoint (monotonic) \hat{T} canonically conjugate to a bounded \hat{H}_{C} .

- A POVM $\hat{E}_T : \mathcal{B}(G)
 ightarrow \mathcal{L}_B(\mathcal{H})$ satisfies
- Positivity: $\hat{E}_T(X) \ge 0 \ \forall X \in \mathcal{B}(G)$.
- Normalization: $\hat{E}_T(G) = \hat{\mathbb{I}}_H$.
- σ -additivity: $\hat{E}_T(\cup_i X_i) = \sum_i \hat{E}_T(X_i)$.

A time operator is a covariant POVM \hat{E}_T wrt. \hat{H}_C :

- $\hat{E}_T(X+t) = \hat{U}_C(t)\hat{E}_X\hat{U}_C^{\dagger}(t)$, with $\hat{U}_C \equiv e^{-i\hat{H}_C t}$.
- In the simplest case, $\hat{E}_T \propto dt |t\rangle \langle t|$.
 - $\hat{T} = \int t \hat{E}_T$ canonically conjugate to \hat{H}_C .

$$\hat{E}_{\chi} = |0\rangle \langle 0| + d\chi \sum_{n=1}^{\infty} \frac{1}{n!} \int \left[\prod_{i=1}^{n} d\chi_{i} d\xi_{i} \right] \frac{\sum_{i=1}^{n} \delta(\chi_{i} - \chi)}{n} \left[\prod_{i=1}^{n} \hat{\varphi}^{\dagger}(\chi_{i}, \xi_{i}) \right] |0\rangle \langle 0| \left[\prod_{i=1}^{n} \hat{\varphi}(\chi_{i}, \xi_{i}) \right]$$

$$\checkmark \text{ Positive, normalized and } \sigma\text{-additive.} \qquad \checkmark \hat{\Pi}_{\chi}\text{-covariant; } \hat{\chi} = \int \chi \hat{E}_{\chi} = \text{intensive scalar field.}$$

LM, Oriti, Wilson-Ewing (in progress).

Luca Marchetti

Clock POVMs

Quantum Mechanics

There cannot exist a self-adjoint (monotonic) \hat{T} canonically conjugate to a bounded \hat{H}_{C} .

- A POVM $\hat{E}_{\mathcal{T}}:\mathcal{B}(\mathcal{G})
 ightarrow\mathcal{L}_{B}(\mathcal{H})$ satisfies
- Positivity: $\hat{E}_T(X) \ge 0 \ \forall X \in \mathcal{B}(G)$.
- Normalization: $\hat{E}_T(G) = \hat{\mathbb{I}}_{\mathcal{H}}$.
- σ -additivity: $\hat{E}_T(\cup_i X_i) = \sum_i \hat{E}_T(X_i)$. Scalar field clock POVMs

A time operator is a covariant POVM \hat{E}_T wrt. \hat{H}_C :

- $\hat{E}_T(X+t) = \hat{U}_C(t)\hat{E}_X\hat{U}_C^{\dagger}(t)$, with $\hat{U}_C \equiv e^{-i\hat{H}_C t}$.
- In the simplest case, $\hat{E}_T \propto \mathrm{d}t \ket{t} \langle t |$.
 - $\hat{T} = \int t \hat{E}_T$ canonically conjugate to \hat{H}_C .

$$\hat{E}_{\chi} = |0\rangle \langle 0| + d\chi \sum_{n=1}^{\infty} \frac{1}{n!} \int \left[\prod_{i=1}^{n} d\chi_{i} d\xi_{i} \right] \frac{\sum_{i=1}^{n} \delta(\chi_{i} - \chi)}{n} \left[\prod_{i=1}^{n} \hat{\varphi}^{\dagger}(\chi_{i}, \xi_{i}) \right] |0\rangle \langle 0| \left[\prod_{i=1}^{n} \hat{\varphi}(\chi_{i}, \xi_{i}) \right]$$

$$\checkmark \text{ Positive, normalized and } \sigma \text{-additive.} \qquad \checkmark \hat{\Pi}_{\chi} \text{-covariant; } \hat{\chi} = \int \chi \hat{E}_{\chi} \text{ = intensive scalar field}$$

$$\hat{E}_{\chi} \text{ is a POVM} \qquad \qquad \hat{E}_{\chi} \text{ represents a scalar field measurement}$$

LM, Oriti, Wilson-Ewing (in progress).

Luca Marchetti

Clock POVMs

Quantum Mechanics

There cannot exist a self-adjoint (monotonic) \hat{T} canonically conjugate to a bounded \hat{H}_{C} .

- A POVM $\hat{\mathcal{E}}_{\mathcal{T}}:\mathcal{B}(\mathcal{G})
 ightarrow\mathcal{L}_{\mathcal{B}}(\mathcal{H})$ satisfies
- Positivity: $\hat{E}_T(X) \ge 0 \ \forall X \in \mathcal{B}(G)$.
- ▶ Normalization: $\hat{E}_T(G) = \hat{\mathbb{I}}_H$.
- σ -additivity: $\hat{E}_T(\cup_i X_i) = \sum_i \hat{E}_T(X_i)$. Scalar field clock POVMs

A time operator is a covariant POVM \hat{E}_T wrt. \hat{H}_C :

- $\hat{E}_T(X+t) = \hat{U}_C(t)\hat{E}_X\hat{U}_C^{\dagger}(t)$, with $\hat{U}_C \equiv e^{-i\hat{H}_C t}$.
- In the simplest case, $\hat{E}_T \propto \mathrm{d}t \ket{t} \langle t |$.
- $\hat{T} = \int t \hat{E}_T \text{ canonically conjugate to } \hat{H}_C.$

$$\hat{E}_{\chi} = |0\rangle \langle 0| + d\chi \sum_{n=1}^{\infty} \frac{1}{n!} \int \left[\prod_{i=1}^{n} d\chi_{i} d\xi_{i}\right] \frac{\sum_{i=1}^{n} \delta(\chi_{i} - \chi)}{n} \left[\prod_{i=1}^{n} \hat{\varphi}^{\dagger}(\chi_{i}, \xi_{i})\right] |0\rangle \langle 0| \left[\prod_{i=1}^{n} \hat{\varphi}(\chi_{i}, \xi_{i})\right] \\ \checkmark \text{ Positive, normalized and } \sigma \text{-additive.} \qquad \checkmark \quad \hat{\Pi}_{\chi} \text{-covariant; } \hat{\chi} = \int \chi \hat{E}_{\chi} = \text{ intensive scalar field.} \\ \hat{E}_{\chi} \text{ is a POVM} \qquad \qquad \hat{E}_{\chi} \text{ represents a scalar field measurement} \\ \hline \text{Relational observables} \\ \hline \left\langle \hat{O}_{\chi}^{(\chi,\xi)} \right\rangle_{\psi} = \left\langle \{\hat{O}_{\chi}^{(\chi,\xi)}, \hat{E}_{\chi}\} \right\rangle_{\psi} \qquad \overset{\text{Is it a sensible definition? } \hat{E}_{\chi} \text{ is not a projector!} \\ \widehat{\&} \text{ Compare with previous results when } |\psi\rangle = |\sigma\rangle!$$

Luca Marchetti

Scalar field clock POVMs

$$\hat{E}_{\chi} = |0\rangle \langle 0| + \mathrm{d}\chi \sum_{n=1}^{\infty} \frac{1}{n!} \int \left[\prod_{i=1}^{n} \mathrm{d}\chi_{i} \, \mathrm{d}\xi_{i}\right] \frac{\sum_{i=1}^{n} \delta(\chi_{i} - \chi)}{n} \left[\prod_{i=1}^{n} \hat{\varphi}^{\dagger}(\chi_{i}, \xi_{i})\right] |0\rangle \langle 0| \left[\prod_{i=1}^{n} \hat{\varphi}(\chi_{i}, \xi_{i})\right]$$

Relational observables

$$\left\langle \hat{O}_{\chi}^{(\chi,\xi)} \right\rangle_{\psi} = \left\langle \{ \hat{O}_{\chi}^{(\chi,\xi)}, \hat{E}_{\chi} \} \right\rangle_{\psi}$$

► Is it a sensible definition? \hat{E}_{χ} is not a projector! ▲ Compare with previous results when $|\psi\rangle = |\sigma\rangle$!

Comparison with previous results

$$\left\langle \hat{O}_{\chi}^{(\chi,\xi)} \right\rangle_{\sigma} = \mathrm{d}\chi \left\{ \frac{1 - |\mathcal{N}|^2}{\|\sigma\|} \left[O^{(\chi,\xi)}(\chi) - \langle \hat{O}^{(\chi,\xi)} \rangle_{\sigma} \frac{\mathbf{N}(\chi)}{\|\sigma\|} \right] + \langle \hat{O}^{(\chi,\xi)} \rangle_{\sigma} \frac{\mathbf{N}(\chi)}{\|\sigma\|} \right\}.$$

- ▶ \mathcal{N} normalization; $\|\sigma\|$ condensate norm;
- $\hat{O}^{(\chi,\xi)}$ perspective-neutral obs.;
- $O^{(\chi,\xi)}(\chi)$ exp. values of deparametrized obs.;
- When $\|\sigma\| \ll 1$, $\langle \hat{O}_{\chi}^{(\chi,\xi)} \rangle_{\sigma} = \mathrm{d}\chi O^{(\chi,\xi)}(\chi)$.
- $\checkmark \text{ Number: } \langle \hat{N}_{\chi} \rangle_{\sigma} = \mathrm{d}\chi N(\chi).$
- \checkmark Scalar field: $\langle \hat{X}_{\chi} \rangle_{\sigma} / N(\chi) \propto d\chi \chi$.
- ✓ Geometry: $\langle \hat{O}_{\chi}^{(\xi)} \rangle_{\sigma} \propto d\chi O^{(\xi)}(\chi)$ when $\|\sigma\| \gg 1$ and single mode (= if symmetric).

LM, Oriti, Wilson-Ewing (in progress)

Luca Marchetti

U(1) example

- ✓ Definition of an effective relational framework:
 - ✓ Achieved via "synchronized" collective states.
 - ✓ Naturally reliable in the classical limit.
 - Breaks down when quantum effects are large.
- ✓ Crucial role of the number operator identified.

- Extension to different physical reference frames.
 - Technically non-trivial.
 - Geometry peaking?
 - More geometry/matter observables needed!
- Comparison with state-agnostic approach.

What about relational observables in full GFT? \longrightarrow POVMs!

LM, Oriti 2008.02774; LM, Oriti 2010.09700; 2110.11176; Gielen, LM, Oriti, Polaczek 2110.11176; LM, Wilson-Ewing (to appear)

Luca Marchetti

Backup

How does our scheme for extraction of relational cosmological physics depend on the specific choice of states?

LM, Gielen, Oriti, Polaczek 2110.11176; Bojowald, Sandhoefer, Skirzewski, Tsobanjan 0804.3365; Bojowald Tsobanjan 0906.1772.

Effective state-agnostic approach for constrained quantum systems

LM, Gielen, Oriti, Polaczek 2110.11176; Bojowald, Sandhoefer, Skirzewski, Tsobanjan 0804.3365; Bojowald Tsobanjan 0906.1772.

Effective state-agnostic approach for constrained quantum systems

Construction of the effective system

LM, Gielen, Oriti, Polaczek 2110.11176; Bojowald, Sandhoefer, Skirzewski, Tsobanjan 0804.3365; Bojowald Tsobanjan 0906.1772.

How does our scheme for extraction of relational cosmological physics depend on the specific choice of states?

Effective state-agnostic approach for constrained quantum systems

Construction of the effective system

Step 1: definition of the quantum phase space

- Describe the system with exp. values $\langle \hat{A}_i \rangle$ and moments:
- Poisson structure inherited from the algebra structure

$$\left\{ \langle \hat{A}_i \rangle \,, \langle \hat{A}_j \rangle \right\} = (i\hbar)^{-1} \left\langle [\hat{A}_i, \hat{A}_j] \right\rangle \,$$
 (same for Δs).

LM, Gielen, Oriti, Polaczek 2110.11176; Bojowald, Sandhoefer, Skirzewski, Tsobanjan 0804.3365; Bojowald Tsobanjan 0906.1772

How does our scheme for extraction of relational cosmological physics depend on the specific choice of states?

Effective state-agnostic approach for constrained quantum systems

Construction of the effective system

Step 1: definition of the quantum phase space

- Describe the system with exp. values $\langle \hat{A}_i \rangle$ and moments:
- Poisson structure inherited from the algebra structure

$$\left\{ \langle \hat{A}_i \rangle \,, \langle \hat{A}_j \rangle \right\} = (i\hbar)^{-1} \left\langle [\hat{A}_i, \hat{A}_j] \right\rangle \,$$
 (same for Δs).

Step 2: definition of the constraints

•
$$\langle \hat{C} \rangle = 0$$
 and $\langle (\widehat{pol} - \langle \widehat{pol} \rangle) \hat{C} \rangle = 0$ eff. constraints;

Generate gauge transf. on the quantum phase space.

LM, Gielen, Oriti, Polaczek 2110.11176; Bojowald, Sandhoefer, Skirzewski, Tsobanjan 0804.3365; Bojowald Tsobanjan 0906.1772

How does our scheme for extraction of relational cosmological physics depend on the specific choice of states?

Effective state-agnostic approach for constrained quantum systems

Construction of the effective system

Step 1: definition of the quantum phase space

- Describe the system with exp. values $\langle \hat{A}_i \rangle$ and moments:
- Poisson structure inherited from the algebra structure

$$\left\{ \langle \hat{A}_i \rangle \,, \langle \hat{A}_j \rangle \right\} = (i\hbar)^{-1} \left\langle [\hat{A}_i, \hat{A}_j] \right\rangle \,$$
 (same for Δ s).

Step 2: definition of the constraints

•
$$\langle \hat{C} \rangle = 0$$
 and $\langle (\widehat{pol} - \langle \widehat{pol} \rangle) \hat{C} \rangle = 0$ eff. constraints;

Generate gauge transf. on the quantum phase space.

Step 3: truncation scheme (e.g. semiclassicality)

LM, Gielen, Oriti, Polaczek 2110.11176; Bojowald, Sandhoefer, Skirzewski, Tsobanjan 0804.3365; Bojowald Tsobanjan 0906.1772.

How does our scheme for extraction of relational cosmological physics depend on the specific choice of states?

A "state-agnostic" strategy is needed!

Effective state-agnostic approach for constrained quantum systems

Construction of the effective system

Step 1: definition of the quantum phase space

- Describe the system with exp. values $\langle \hat{A}_i \rangle$ and moments:
- Poisson structure inherited from the algebra structure

$$\left\{ \langle \hat{A}_i \rangle \,, \langle \hat{A}_j \rangle \right\} = (i\hbar)^{-1} \left\langle [\hat{A}_i, \hat{A}_j] \right\rangle \ \text{(same for } \Delta s\text{)}.$$

Step 2: definition of the constraints

•
$$\langle \hat{C} \rangle = 0$$
 and $\langle (\widehat{pol} - \langle \widehat{pol} \rangle) \hat{C} \rangle = 0$ eff. constraints;

Generate gauge transf. on the quantum phase space.

Step 3: truncation scheme (e.g. semiclassicality)

Luca Marchetti

Relational physics in GFTs

Relational description

LM, Gielen, Oriti, Polaczek 2110.11176; Bojowald, Sandhoefer, Skirzewski, Tsobanjan 0804.3365; Bojowald Tsobanjan 0906.1772.

How does our scheme for extraction of relational cosmological physics depend on the specific choice of states?

A "state-agnostic" strategy is needed!

Effective state-agnostic approach for constrained quantum systems

Construction of the effective system

Step 1: definition of the quantum phase space

- Describe the system with exp. values $\langle \hat{A}_i \rangle$ and moments:
- Poisson structure inherited from the algebra structure

$$\left\{ \langle \hat{A}_i \rangle \,, \langle \hat{A}_j \rangle \right\} = (i\hbar)^{-1} \left\langle [\hat{A}_i, \hat{A}_j] \right\rangle \,$$
 (same for Δ s).

Step 2: definition of the constraints

- $\langle \hat{C} \rangle = 0$ and $\langle (\widehat{pol} \langle \widehat{pol} \rangle) \hat{C} \rangle = 0$ eff. constraints;
- Generate gauge transf. on the quantum phase space.

Step 3: truncation scheme (e.g. semiclassicality)

LM, Gielen, Oriti, Polaczek 2110.11176; Bojowald, Sandhoefer, Skirzewski, Tsobanjan 0804.3365; Bojowald Tsobanjan 0906.1772.

Luca Marchetti

Relational physics in GFTs

Relational description

Step 1: choose a clock \hat{T} ([\hat{T}, \hat{P}] closes)

How does our scheme for extraction of relational cosmological physics depend on the specific choice of states?

A "state-agnostic" strategy is needed!

Effective state-agnostic approach for constrained quantum systems

Construction of the effective system

Step 1: definition of the quantum phase space

- Describe the system with exp. values $\langle \hat{A}_i \rangle$ and moments:
- Poisson structure inherited from the algebra structure

$$\left\{ \langle \hat{A}_i \rangle \,, \langle \hat{A}_j \rangle \right\} = (i\hbar)^{-1} \left\langle [\hat{A}_i, \hat{A}_j] \right\rangle \ \text{(same for } \Delta s\text{)}.$$

Step 2: definition of the constraints

•
$$\langle \hat{C} \rangle = 0$$
 and $\langle (\widehat{pol} - \langle \widehat{pol} \rangle) \hat{C} \rangle = 0$ eff. constraints;

Generate gauge transf. on the quantum phase space.

Step 3: truncation scheme (e.g. semiclassicality)

LM, Gielen, Oriti, Polaczek 2110.11176; Bojowald, Sandhoefer, Skirzewski, Tsobanjan 0804.3365; Bojowald Tsobanjan 0906.1772.

Luca Marchetti

Relational physics in GFTs

Relational description

Step 1: choose a clock \hat{T} ([\hat{T}, \hat{P}] closes)

Step 2: gauge fixing

- At 1st order: $\Delta(TA_i) = 0, A_i \in \mathcal{A} \setminus \{\hat{P}\}.$
- Use constraints to eliminate \hat{P} -variables.

How does our scheme for extraction of relational cosmological physics depend on the specific choice of states?

A "state-agnostic" strategy is needed!

Effective state-agnostic approach for constrained quantum systems

Construction of the effective system

Step 1: definition of the quantum phase space

- Describe the system with exp. values $\langle \hat{A}_i \rangle$ and moments:
- Poisson structure inherited from the algebra structure

$$\left\{ \langle \hat{A}_i \rangle \,, \langle \hat{A}_j \rangle \right\} = (i\hbar)^{-1} \left\langle [\hat{A}_i, \hat{A}_j] \right\rangle \text{ (same for } \Delta s).$$

Step 2: definition of the constraints

- $\langle \hat{C} \rangle = 0$ and $\langle (\widehat{pol} \langle \widehat{pol} \rangle) \hat{C} \rangle = 0$ eff. constraints;
- Generate gauge transf. on the quantum phase space.
 Step 3: truncation scheme (e.g. semiclassicality)

Relational description

Step 1: choose a clock \hat{T} ([\hat{T}, \hat{P}] closes)

Step 2: gauge fixing

- At 1st order: $\Delta(TA_i) = 0, A_i \in \mathcal{A} \setminus \{\hat{P}\}.$
- Use constraints to eliminate \hat{P} -variables.

Step 3: relational rewriting

- Determine the remaining gauge flow which preserves the gauge conditions.
- Write evolution of the remaining variables wrt. T (classical clock).
- LM, Gielen, Oriti, Polaczek 2110.11176; Bojowald, Sandhoefer, Skirzewski, Tsobanjan 0804.3365; Bojowald Tsobanjan 0906.1772.

How can this framework be generalized to a **field theory context**? Infinitely many algebra generators. Infinitely many quantum constraints.

LM, Gielen, Oriti, Polaczek 2110.11176.

Luca Marchetti

How can this framework be generalized to a **field theory context**? Infinitely many algebra generators. Infinitely many quantum constraints.

Additional truncation scheme

►

Motivations

- Interest in a coarse grained system characterized by a small number of macroscopic (1-body) observables.
- Expected to be the case for cosmology.

GFT with MCMF scalar field

- Free e.o.m.: $\mathcal{D}\varphi \equiv (m^2 + \hbar^2 \Delta_g + \lambda \hbar^2 \partial_{\chi}^2)\varphi = 0.$
- ► Quantum constr. $\hat{C} = \int \hat{\varphi}^{\dagger} \mathcal{D} \hat{\varphi} = m^2 \hat{N} \hat{\Lambda} \lambda \hat{\Pi}_2$. ► \hat{K}
- Generators: \hat{X} , $\hat{\Pi}$, $\hat{\Pi}_2$, \hat{N} , $\hat{\Lambda}$ and \hat{K} .
- \hat{K} such that $[\hat{\Lambda}, \hat{K}] = i\hbar\alpha\hat{K}$.

Coarse-graining truncation

Algebra generated by minimal set of physically

When the e.o.m. are linear, consider an

integrated 1-body quantum constraint.

relevant operators (including constraint).

LM, Gielen, Oriti, Polaczek 2110.11176

Luca Marchetti

Setting

How can this framework be generalized to a field theory context? Infinitely many algebra generators.

Infinitely many quantum constraints.

Coarse-graining truncation

Algebra generated by minimal set of physically

When the e.o.m. are linear, consider an

integrated 1-body quantum constraint.

relevant operators (including constraint).

►

Motivations

- Interest in a coarse grained system ► characterized by a small number of macroscopic (1-body) observables.
- Expected to be the case for cosmology.

GET with MCME scalar field

Free e.o.m.:
$$\mathcal{D}\varphi \equiv (m^2 + \hbar^2 \Delta_g + \lambda \hbar^2 \partial_{\chi}^2)\varphi = 0.$$

► Quantum constr.
$$\hat{C} = \int \hat{\varphi}^{\dagger} \mathcal{D} \hat{\varphi} = m^2 \hat{N} - \hat{\Lambda} - \lambda \hat{\Pi}_2$$
. ► \hat{K} such

Expectation values and variances

- The procedure can naturally be carried over by choosing as clock variable \hat{K} .
- Relational evolution of $\langle \hat{X} \rangle$ in agreement with classical cosmology.

• Generators:
$$\hat{X}$$
, $\hat{\Pi}$, $\hat{\Pi}_2$, \hat{N} , $\hat{\Lambda}$ and \hat{K}

•
$$\hat{K}$$
 such that $[\hat{\Lambda}, \hat{K}] = i\hbar\alpha\hat{K}$.

- Fluctuations are decoupled from expect. values.
- If they are small at small $\langle \hat{K} \rangle$ they stay small even at large $\langle \hat{K} \rangle$ (probably associated to a constant $\langle \hat{N} \rangle$).

I.M. Gielen, Oriti, Polaczek 2110.11176

Luca Marchetti

Setting