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The (T)GFT approach to quantum gravity

Ts are QFTs of atoms of spac b

> Take seriously the idea of a microscopic structure of spacetime.

> Related to canonical and discrete path-integral approaches to QG.

> Access to powerful field theoretic methods (Fock space, RG...)!

Oriti 0912.2441; Oriti 1110.5606; Oriti 1408.7112; Krajewski 1210.6257; Oriti 1807.04875; Gielen, Sindoni 1602.081f

Developments in GFT Cosmology



The (T)GFT approach to quantum gravity

Ts are QFTs of atoms of spac b

> Take seriously the idea of a microscopic structure of spacetime.

> Related to canonical and discrete path-integral approaches to QG.

> Access to powerful field theoretic methods (Fock space, RG...)!

Group Field Theory Quanta

» GFT quanta are atoms of quantum of d — 1-space, i.e.
d — 1-dimensional simplices.

» Data associated to a single quantum are field data of a
d — 1-simplex (g, = gravitational, x = scalar fields).
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The (T)GFT approach to quantum gravity

Ts are QFTs of atoms of spac b

> Take seriously the idea of a microscopic structure of spacetime.

> Related to canonical and discrete path-integral approaches to QG.

> Access to powerful field theoretic methods (Fock space, RG...)!

Group Field Theory Quanta

» GFT quanta are atoms of quantum of d — 1-space, i.e.
d — 1-dimensional simplices.

» Data associated to a single quantum are field data of a
d — 1-simplex (g, = gravitational, x = scalar fields).

Group Field Theory Processes

> GFT Feynman diagrams (QG processes) are associated to
d-dimensional triangulated manifolds.

» Data associated to QG processes are field data of
d-dimensional triangulated manifolds.

> Zcrr = discrete matter-gravity path-integral.

Oriti 0912.2441; Oriti 1110.5606; Oriti 1408.7112; Krajewski 1210.6257; Oriti 1807.04875; Gielen, Sindoni 1602.081f
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The main ingredients
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GFT condensates

> From the GFT perspective, continuum geometries are associated to large number of quanta.

» The simplest states that can accommodate infinite number of quanta are condensate states:

o) =Ny o | [ ax [ dgs ot x™) (@ x™)] 10)-

LM, Oriti, Pithis, Thiirigen 2211.12768 ; LM, Oriti 2008.02774-2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Oriti, Sindoni 1311.1238
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The main ingredients

GFT condensates

v

From the GFT perspective, continuum geometries are associated to large number of quanta.

The simplest states that can accommodate infinite number of quanta are condensate states:

o) =Ny o | [ ax [ dgs ot x™) (@ x™)] 10)-

Collective states ‘
v

Mean-field approximation

> When interactions are small (certainly satisfied in an appropriate regime) the dynamics of o is:
3S[p, ¢ - & IV[p, ™

L2 Q] = [ah, [axKla, b o = X x) + AP L

5¢(gr, x*) 60 (82, x*) | s

» Equivalent to meamﬁeld (saddle-point) approx. of Zgrr (reliable for physical models).

=0.

i, Sindoni, Wilson-Ewing 1602.05881; Gielen, Oriti, Sindoni 1311.1238
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v

From the GFT perspective, continuum geometries are associated to large number of quanta.

v

The simplest states that can accommodate infinite number of quanta are condensate states:

o) =Ny o | [ ax [ dgs ot x™) (@ x™)] 10)-

Mean-field approximation

When interactions are small (certainly satisfied in an appropriate regime) the dynamics of o is:

<55[“’“> [ [axrge, o, 6 =X (hosx®) + A 222 L

=0.
5¢(gr, x*) 60 (82, x*) | s

> Equivalent to mean-field (saddle-point) approx. of Zger (reliable for physical models).

Condensate Peaked States

» Constructing relational observables in full QG is difficult (QFT with no continuum intuition).

Relationality

i, Sindoni, Wilson-Ewing 1602.05881; Gielen, Oriti, Sindoni 1311.1238
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GFT condensates

From the GFT perspective, continuum geometries are associated to large number of quanta.

The simplest states that can accommodate infinite number of quanta are condensate states:

o) =Ny o | [ ax [ dgs ot x™) (@ x™)] 10)-

Mean-field approximation

When interactions are small (certainly satisfied in an appropriate regime) the dynamics of o is:

<55[“’“> [ [axrge, o, 6 =X (hosx®) + A 222 L

=0.
5¢(gr, x*) 60 (82, x*) | s

Equivalent to mean-field (saddle-point) approx. of Zger (reliable for physical models).

Condensate Peaked States

» Constructing relational observables in full QG is difficult (QFT with no continuum intuition).
Relational localization implemented at an effective level on observable averages on condensates.

If X" constitute a physical reference frame, this can be achieved by assuming

Relationality

o = (fixed peaking function 1) x (dynamically determined reduced wavefunction &)

Developments in GFT Cosmology
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Homogeneous (non-symmetry-reduced) sector

Modified Friedmann dynamics

No interactions

e Cesare, Oriti, Pithis 1606.00352; LM, Oriti 2112.12 ; 03751; Ladstitter, LM, Oriti (to appea Pithis (to appear)
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Homogeneous (non-symmetry-reduced) sector

Modified Friedmann dynamics

Early times: quantum bounce

v (Universal, average) Singularity resolution into
quantum bounce.

v Impact of quantum effects on bounce quantified.

No interactions

Pang 2105.03751; Lad
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Homogeneous (non-symmetry-reduced) sector

Modified Friedmann dynamics

v Impact of quantum effects on bounce quantified. v Classical limit identified (large N).

(2}

5 Early times: quantum bounce Late times: Friedmann dynamics
E v (Universal, average) Singularity resolution into v (Universal, average) Dynamics

E quantum bounce. compatible with flat FLRW.
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Homogeneous (non-symmetry-reduced) sector

No interactions

Modified Friedmann dynamics

Early times: quantum bounce

(Universal, average) Singularity resolution into 4

quantum bounce.

Impact of quantum effects on bounce quantified. v

Only for MCMF scalar fields: extension to more A

realistic matter?

Pang 2105.03751; Lad

Late times: Friedmann dynamics

(Universal, average) Dynamics
compatible with flat FLRW.

Classical limit identified (large N).

Only for MCMF scalar fields: extension
to more realistic matter?
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Homogeneous (non-symmetry-reduced) sector

Modified Friedmann dynamics

Early times: quantum bounce Late times: Friedmann dynamics
v (Universal, average) Singularity resolution into v (Universal, average) Dynamics
quantum bounce. compatible with flat FLRW.

v Impact of quantum effects on bounce quantified. v Classical limit identified (large N).

A Only for MCMF scalar fields: extension to more & Only for MCMF scalar fields: extension
realistic matter? to more realistic matter?

No interactions

Geometric acceleration from interactions
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Homogeneous (non-symmetry-reduced) sector

Modified Friedmann dynamics

v Impact of quantum effects on bounce quantified. v Classical limit identified (large N).
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A Only for MCMF scalar fields: extension to more & Only for MCMF scalar fields: extension
realistic matter? to more realistic matter?

Geometric acceleration from interactions

Early times: geometric inflation
v Long lasting acceleration from QG interactions.

A For some models bottom-up natural and slow-roll.

De Cesare, Oriti, Pithis 1606.00352; LM, Oriti 2112.12677; Oriti, Pang 2105.03751; Ladstatter, LM, Oriti (to appear); Jercher, LM, Pithis (to appear)
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Homogeneous (non-symmetry-reduced) sector

Modified Friedmann dynamics

Early times: quantum bounce

quantum bounce.

v Impact of quantum effects on bounce quantified. v

No interactions

realistic matter?

Geometric acceleration from interactions

v (Universal, average) Singularity resolution into v

A Only for MCMF scalar fields: extension to more A

Late times: Friedmann dynamics

(Universal, average) Dynamics
compatible with flat FLRW.

Classical limit identified (large N).

Only for MCMF scalar fields: extension
to more realistic matter?

Early times: geometric inflation
v Long lasting acceleration from QG interactions. v

A For some models bottom-up natural and slow-roll.

Late times: phantom dark energy

Phantom dark energy generated by QG
effects (no kinetic energy issue).

De Cesare, Oriti, Pithis 1606.00352; LM, Oriti 2112.12677; Oriti, Pang 2105.03751; Ladstatter, LM, Oriti (to appear); Jercher, LM, Pithis (to appear)
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Homogeneous (non-symmetry-reduced) sector

Modified Friedmann dynamics

Early times: quantum bounce
v (Universal, average) Singularity resolution into v
quantum bounce.
v Impact of quantum effects on bounce quantified. v

A Only for MCMF scalar fields: extension to more A
realistic matter?

No interactions

Geometric acceleration from interactions

Late times: Friedmann dynamics

(Universal, average) Dynamics
compatible with flat FLRW.

Classical limit identified (large N).

Only for MCMF scalar fields: extension
to more realistic matter?

Early times: geometric inflation

v Long lasting acceleration from QG interactions. v
A For some models bottom-up natural and slow-roll.
& Comparison with observations? VN

Late times: phantom dark energy

Phantom dark energy generated by QG
effects (no kinetic energy issue).

Comparison with observations?

De Cesare, Oriti, Pithis 1606.00352; LM, Oriti 2112.12677; Oriti, Pang 2105.03751; Ladstatter, LM, Oriti (to appear); Jercher, LM, Pithis (to appear)
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Homogeneous (non-symmetry-reduced) sector

Modified Friedmann dynamics

v Impact of quantum effects on bounce quantified. v Classical limit identified (large N).
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5 Early times: quantum bounce Late times: Friedmann dynamics
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A Only for MCMF scalar fields: extension to more & Only for MCMF scalar fields: extension
realistic matter? to more realistic matter?

Geometric acceleration from interactions

Early times: geometric inflation Late times: phantom dark energy
v Long lasting acceleration from QG interactions. v/ Phantom dark energy generated by QG
A For some models bottom-up natural and slow-roll. effects (no kinetic energy issue).
& Comparison with observations? & Comparison with observations?

Interacting scalar fields and running couplings
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Homogeneous (non-symmetry-reduced) sector

Modified Friedmann dynamics

v Impact of quantum effects on bounce quantified. v Classical limit identified (large N).
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5 Early times: quantum bounce Late times: Friedmann dynamics
E v (Universal, average) Singularity resolution into v (Universal, average) Dynamics

E quantum bounce. compatible with flat FLRW.
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A Only for MCMF scalar fields: extension to more & Only for MCMF scalar fields: extension
realistic matter? to more realistic matter?

Geometric acceleration from interactions

Early times: geometric inflation Late times: phantom dark energy
v Long lasting acceleration from QG interactions. v/ Phantom dark energy generated by QG
A For some models bottom-up natural and slow-roll. effects (no kinetic energy issue).
& Comparison with observations? & Comparison with observations?

Interacting scalar fields and running couplings

v/ Matching with GR requires the macroscopic
constants (including G) to run with time.

De Cesare, Oriti, Pithis 1606.00352; LM, Oriti 2112.12677; Oriti, Pang 2105.03751; Ladstatter, LM, Oriti (to appear); Jercher, LM, Pithis (to appear)
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Homogeneous (non-symmetry-reduced) sector

Modified Friedmann dynamics

v Impact of quantum effects on bounce quantified. v Classical limit identified (large N).

(2}

5 Early times: quantum bounce Late times: Friedmann dynamics
E v (Universal, average) Singularity resolution into v (Universal, average) Dynamics

E quantum bounce. compatible with flat FLRW.

S
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A Only for MCMF scalar fields: extension to more & Only for MCMF scalar fields: extension
realistic matter? to more realistic matter?

Geometric acceleration from interactions

Early times: geometric inflation Late times: phantom dark energy
v Long lasting acceleration from QG interactions. v/ Phantom dark energy generated by QG
A For some models bottom-up natural and slow-roll. effects (no kinetic energy issue).
& Comparison with observations? & Comparison with observations?
Interacting scalar fields and running couplings
v/ Matching with GR requires the macroscopic A Insights on renormalization?

constants (including G) to run with time. & Connection with asymptotic safety?

De Cesare, Oriti, Pithis 1606.00352; LM, Oriti 2112.12677; Oriti, Pang 2105.03751; Ladstatter, LM, Oriti (to appear); Jercher, LM, Pithis (to appear)
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Inhomogeneous (scalar and isotropic) sector

Classical Quantum
» 4 MCMF reference fields (XOA, Xi), » Two-sector GFT: timelike and spacelike tetrahedra.

> 1 MCMF matter field ¢ dominating e.m.
budget and relationally inhomog. wrt.x'.

Inhomogeneities = quantum correlations

Setting

Pithis 2206.15442 ; Gielen, Mickel 2211.04500

7; Jercher, Oriti
GFT Cosmology

Oriti (to appea
Developments




Inhomogeneous (scalar and isotropic) sector

Classical Quantum
o0 ;
E > 4 MCMF reference fields (XOA, x"), » Two-sector GFT: timelike and spacelike tetrahedra.
b=
& > 1 MCMF matter field ¢ dominating e.m. . X
. . i Inhomogeneities = quantum correlations
budget and relationally inhomog. wrt.x'.
‘ Classical dynamics with trans-Planckian QG effects

17}

.g Results

o v QG corrections to the dynamics of

E trans-Planckian volume pert.

v/ Good GR matching at larger scales.

Pithis 2206.15442 ; Gielen, Mickel 2211.04500

Oriti (to appear); 7; Jercher, Oriti

Jercher, LM, Pithis (to appear);
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Inhomogeneous (scalar and isotropic) sector

Classical Quantum
o0 ;
E > 4 MCMF reference fields (XOA, x"), » Two-sector GFT: timelike and spacelike tetrahedra.
2
& > 1 MCMF matter field ¢ dominating e.m. . X
. . i Inhomogeneities = quantum correlations
budget and relationally inhomog. wrt.x'.
‘ Classical dynamics with trans-Planckian QG effects

("]

g Results Work in progress

:; v QG corrections to the dynamics of A& Physical (perhaps observable) consequences
E trans-Planckian volume pert. of trans-Planckian mismatch?

v/ Good GR matching at larger scales. A Scalar field perturbations? EFT description?

Pithis 2206.15442 ; Gielen, Mickel 2211.04500

Oriti (to appear); 7; Jercher, Oriti

Jercher, LM, Pithis (to appear);
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Inhomogeneous (scalar and isotropic) sector

Classical Quantum

» 4 MCMF reference fields (XO, Xi), » Two-sector GFT: timelike and spacelike tetrahedra.

» 1 MCMF matter field ¢ dominating e.m. .. .
. . i Inhomogeneities = quantum correlations
budget and relationally inhomog. wrt.x'.

Setting

Classical dynamics with trans-Planckian QG effects
Work in progress

A& Physical (perhaps observable) consequences
of trans-Planckian mismatch?

A Scalar field perturbations? EFT description?

Results
v/ QG corrections to the dynamics of
trans-Planckian volume pert.
v/ Good GR matching at larger scales.

Late times

Super-horizon QG effects

Results
v/ Volume pert. dynamics differs from MG.

v Full QG volume pert. dynamics differs from
QG perturbed background one.

Jercher, LM, Pithis (to appear); Oriti (to appear); 7; Jercher, Oriti, Pithis 2206.15442 ; Gielen, Mickel 2211.04500
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Inhomogeneous (scalar and isotropic) sector

» Two-sector GFT: timelike and spacelike tetrahedra.

Inhomogeneities = quantum correlations

Work in progress

A& Physical (perhaps observable) consequences
of trans-Planckian mismatch?

Classical Quantum
o0 ;
é > 4 MCMF reference fields (x°, x'),
¢ > 1 MCMF matter field ¢ dominating e.m.

budget and relationally inhomog. wrt.x'.

Classical dynamics with trans-Planckian QG effects
("]
E Results
o v QG corrections to the dynamics of
E trans-Planckian volume pert.

v/ Good GR matching at larger scales.

Super-horizon QG effects

A Scalar field perturbations? EFT description?

Results
v/ Volume pert. dynamics differs from MG.

v Full QG volume pert. dynamics differs from
QG perturbed background one.

Jercher, LM, Pithis (to appear); Oriti (to appear);

Developments

Work in progress
& Different fundamental d.o.f. — different
perturbation dynamics?
A Scalar field perturbations? EFT description?

7; Jercher, Oriti, Pithis 2206.15442 ; Gielen, Mickel 2211.04500

GFT Cosmology




Relationality v Singularity resolution;
via peaking v Quantum geometric accel.
(inflation, dark energy);

v Classical limit;

Background

A\

More matter components?

Observative consequences?

Microscopic Macroscopic
description Collective states description Cosmological
Based on funda- (condensates) Based on averages of physics

mental GFT quanta collective observables

Inhomogeneities = quantum
correlations;

Trans-Planckian QG effects;
QG emergent dynamics # MG;

Extension to VT modes?

Coarse-graining

Primordial power spectrum?

Inhomogeneities
A2 B B NN

via mean-field s
Classicalization problem?
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Group Field Theory and spinfoam models

Group Field Theories: theories of d is the dimension of the “spacetime to be”
a field ¢ : GY — C defined on (d = 4) and G is the local gauge group of gravity
d copies of a group manifold G. G = SL(2,C) or, in some cases, G = SU(2).

Oriti 1110.5606: Reisenberger, Rovelli 0002083; De Pietri, Petronio 0004045; Gurau 1006.0714; Baratin, Oriti 1002.4723; Finocchiaro, Oriti 1812.03550.
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Group Field Theory and spinfoam models

Group Field Theories: theories of d is the dimension of the “spacetime to be”
a field ¢ : GY — C defined on (d = 4) and G is the local gauge group of gravity
d copies of a group manifold G. G = SL(2,C) or, in some cases, G = SU(2).
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Ste #1 = [ depl@)Klel(e) + 30 27 Trv, [ol + cc.. Iy
~
5 Interaction terms are combinatorially non-local.
5 > Field arguments convoluted pairwise following the combinatorial
< pattern dictated by the graph ~:
N—y nry
— (i) ,0) () .
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Oriti 1110.5606: Reisenberger, Rovelli 0002083; De Pietri, Petronio 0004045; Gurau 1006.0714; Baratin, Oriti 1002.4723; Finocchiaro, Oriti 1812.03550.
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Group Field Theory and spinfoam models

Group Field Theories: theories of d is the dimension of the “spacetime to be”
a field ¢ : GY — C defined on (d = 4) and G is the local gauge group of gravity
d copies of a group manifold G. G = SL(2,C) or, in some cases, G = SU(2).
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g > Amplitudes Ar = sums over group theoretic data associated to the cellular complex.
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Group Field Theory and spinfoam models

Group Field Theories: theories of d is the dimension of the “spacetime to be”
a field ¢ : GY — C defined on (d = 4) and G is the local gauge group of gravity
d copies of a group manifold G. G = SL(2,C) or, in some cases, G = SU(2).
= - )\’y
Sle, @1 = [ dea@(ga)Klel(ea) + >~ Trv, [¢] +cc.. ot 4
~
5 > Interaction terms are combinatorially non-local.
5 > Field arguments convoluted pairwise following the combinatorial
< pattern dictated by the graph ~:
N—"/ nry /5
Troylel = [Tde TT V(e ) [T ete)- 110 P A P
Y=l (a,i;b,j) i=1 ‘ o
2
B Zlp, @] = Z wr({Ay})Ar = complete spinfoam model.
g r
G-
§ > I = stranded diagrams dual to d-dimensional cellular complexes of arbitrary topology.
g > Amplitudes Ar = sums over group theoretic data associated to the cellular complex.
& » Kand V- chosen to match the desired spinfoam model.

Oriti 1110.5606: Reisenberger, Rovelli 0002083; De Pietri, Petronio 0004045; Gurau 1006.0714; Baratin, Oriti 1002.4723; Finocchiaro, Oriti 1812.03550.
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Group Field Theory and Loop Quantum Gravity

One-particle Hilbert space

The one-particle Hilbert space is Hietra C ®* Ha, (subset defined by the imposition of constraints
a=1710,

Finocchiaro, Oriti 1812.03550; Baez, Barrett 9903060; Baratin, Oriti 1002.4723; Gielen, Oriti 1004.5371; Oriti 1310.7786.
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Group Field Theory and Loop Quantum Gravity

One-particle Hilbert space

The one-particle Hilbert space is Hietra C ®* Ha, (subset defined by the imposition of constraints
a=1710,

Lie algebra (metric)
Ha, = L*(a)

Constraints

Geometricity constraints (appropriately encoded in K and V. ) allow for a
d — 1-simplicial interpretation of the fundamental quanta:

Closure Simplicity
>,B, =0 > X-(B—~x*B),=0 (EPRL);
(faces of the tetrahedron close). » X.B,=0(BQC).

Finocchiaro, Oriti 1812.03550; Baez, Barrett 9903060; Barati i iti 1004.5371; Oriti 1310.7786.
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Group Field Theory and Loop Quantum Gravity

One-particle Hilbert space

The one-particle Hilbert space is Hietra C ®::17-LA3 (subset defined by the imposition of constraints)

Lie algebra (metric)
Ha, = L*(a)

Constraints

Geometricity constraints (appropriately encoded in K and V. ) allow for a
d — 1-simplicial interpretation of the fundamental quanta:

Closure Simplicity THIS

Za Ba =0 >
(faces of the tetrahedron close). >

.
(B — v+ B), = 0 (EPRL); LK
B

X -
X - B, =0 (BC).

Finocchiaro, Oriti 1812.03550; Baez, Barrett 9903060; Barati i iti 1004.5371; Oriti 1310.7786.
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Group Field Theory and Loop Quantum Gravity

One-particle Hilbert space

The one-particle Hilbert space is Hietra C ®* Ha, (subset defined by the imposition of constraints
a=1710,

Lie algebra (metric) Lie group (connection)

Ha, = L*(g) N°”'ch”‘”" Ha, = L2(6)

Constraints

Geometricity constraints (appropriately encoded in K and V. ) allow for a
d — 1-simplicial interpretation of the fundamental quanta:

Closure Simplicity THis TaLK 83
>,B.=0 » X-(B—~v%*B),=0(EPRL);
(faces of the tetrahedron close). » X.B,=0(BQC).
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Group Field Theory and Loop Quantum Gravity

One-particle Hilbert space

The one-particle Hilbert space is Hietra C ®* Ha, (subset defined by the imposition of constraints
a=1710,

Lie algebra (metric) Lie group (connection) Representation space

Ha :Lz(g) Non-comm. Ha :LQ(G) Peter-Weyl Mo =D, H,
° FT ? Theorem ? dp <0

Constraints

Geometricity constraints (appropriately encoded in K and V. ) allow for a
d — 1-simplicial interpretation of the fundamental quanta:

Closure Simplicity THis TALK J3
>,B.=0 » X-(B—~v%*B),=0(EPRL);
(faces of the tetrahedron close). » X.B,=0(BQC).

Finocchiaro, Oriti 1812.03550; Baez, Barrett 9903060; Barati i iti 1004.5371; Oriti 1310.7786.
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Group Field Theory and Loop Quantum Gravity

One-particle Hilbert space

The one-particle Hilbert space is Hietra C ®* Ha, (subset defined by the imposition of constraints
a=1710,

Lie algebra (metric) Lie group (connection) Representation space

Ha :Lz(g) Non-comm. Ha :LQ(G) Peter-Weyl Mo =D, H,
° FT ? Theorem ? dp <0

Constraints

Geometricity constraints (appropriately encoded in K and V. ) allow for a
d — 1-simplicial interpretation of the fundamental quanta:

Closure Simplicity THIS TALK
>,B.=0 » X-(B—~v%*B),=0(EPRL);
(faces of the tetrahedron close). » X.B,=0(BQC).

8 > Impose simplicity and reduce to G = SU(2).
= » Impose closure (gauge invariance).

Finocchiaro, Oriti 1812.03550; Baez, Barrett 9903060; Barati i iti 1004.5371; Oriti 1310.7786.
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Group Field Theory and Loop Quantum Gravity

One-particle Hilbert space

The one-particle Hilbert space is Hietra C ®* Ha, (subset defined by the imposition of constraints
a=1710,

Lie algebra (metric) Lie group (connection) Representation space

Ha :Lz(g) Non-comm. Ha :LQ(G) Peter-Weyl Mo =D, H,
° FT ? Theorem ? dp <0

Constraints

Geometricity constraints (appropriately encoded in K and V. ) allow for a
d — 1-simplicial interpretation of the fundamental quanta:

Closure Simplicity THIS T
AL
B, =0 > X.(B—~xB),=0(EPRL); K
(faces of the tetrahedron close). » X.B,=0(BQC).
8 > Impose simplicity and reduce to G = SU(2). Heietra = @f Inv [®2_H,,]
= » Impose closure (gauge invariance). = open spin-network vertex space

Finocchiaro, Oriti 1812.03550; Baez, Barrett 9903060; Barati i iti 1004.5371; Oriti 1310.7786.
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The Group Field Theory Fock space

Tetrahedron wavefunction

w(g1,---,8)
(subject to constraints)

Oriti 1310.7786; Oriti 1408.7112; Sahlman, Sherif 2302.03612.
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The Group Field Theory Fock space

Tetrahedron wavefunction GFT field operator

Many-body

le\(glv a0 vg4)
(subject to constraints)

wlet, .- 8s)

. . Th
(subject to constraints) eory

Sahlman, Sherif 2302.03f
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The Group Field Theory Fock space

Tetrahedron wavefunction GFT field operator

Many-body

le\(glv a0 vg4)
(subject to constraints)

wlet, .- 8s)

. . Th
(subject to constraints) eory

oo
1 2 v
Forr = @ sym [HE, @ HO, © .. HL)]
V=0

FGFT generated by action of @T(ga) on |0), with [®(ga), @T(ga')] =Ic(gsr &2)-
Hr C Ferr, Hr space of states associated to connected simplicial complexes .

Generic states do not correspond to connected simplicial lattices nor classical simplicial geometries.

vvyVvVyy

Similar to Hqg but also different: no continuum intuition, orthogonality wrt nodes, not graphs.

Oriti 1310.7786; Oriti 1408.7112; Sahlman, Sherif 2302.03612.
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The Group Field Theory Fock space

Tetrahedron wavefunction Many-body GFT field operator

wlet, .- 8s)

(g1, -, 84)
(subject to constraints) Theory

(subject to constraints)

oo
1 2 v
Ferr = @ Sym [HElea ® ngt)ra & H( ) ]
V=0

tetra

» JFGrT generated by action of @T(ga) on |0), with [®(ga), @T(ga')] =Ic(gsr &2)-
» Hr C Forr, Hr space of states associated to connected simplicial complexes I'.
» Generic states do not correspond to connected simplicial lattices nor classical simplicial geometries.

» Similar to Hqc but also different: no continuum intuition, orthogonality wrt nodes, not graphs.

Volume operator V = / dg dgPv(e®, g9 (e{)pE®) = D Viari® o Piaimare:

Jarma,t
» Generic second quantization prescription to build a m + n-body operator: sandwich matrix

elements between spin-network states between m powers of @T and n powers of ¢.

Operators

X

Oriti 1310.7786; Oriti 1408.7112; Sahlman, Sherif 2302.03612.

Luca Marchetti
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scopic cosmological variables and effective relationality

Spatial relational homogeneity:
o depends on a MCMF “clock” scalar field x°
(D = minisuperspace + clock)

Oriti 2008.0277: Oriti 2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Oriti, Pithis 2112.00091.
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Macroscopic cosmological variables and effective relationality

Spatial relational homogeneity:
o depends on a MCMF “clock” scalar field x°
(D = minisuperspace + clock)

Collective Observables

Number, volume (determined e.g. by the mapping with
LQG) and matter operators (notation: (-, -) :/dxodga)i

R =27, ¢) V= (p", Vg
X = (2',x°0) A’ = —i(a", 09)

» Observables <+ collective operators on Fock space.

Oriti 2008.02774; LM, Oriti 2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Oriti, Pithis 2112.00091
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Macroscopic cosmological variables and effective relationality

Spatial relational homogeneity:
o depends on a MCMF “clock” scalar field x°
(D = minisuperspace + clock)

Collective Observables

Number, volume (determined e.g. by the mapping with
LQG) and matter operators (notation: (-, -) :/dxodga)i

R =27, ¢) V= (p", Vg
X = (2',x°0) A’ = —i(a", 09)

» Observables <+ collective operators on Fock space.

> <O>0xo = O[5]|xo=xo:
functionals of &
localized at x°.

Oriti 2008.02774; LM, Oriti 2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Oriti, Pithis 2112.00091
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Macroscopic cosmological variables and effective relationality

Spatial relational homogeneity:
o depends on a MCMF “clock” scalar field x°
(D = minisuperspace + clock)

Collective Observables Relationality

Number, volume (determined e.g. by the mapping with > Averaged evolution wrt X is physical:
LQG) and matter operators (notation: (-, -) :/dxodga):

f ~0 _ /%0 o 0
A . ) . Intensive (X )axo = (X )Uxu / (N)UXU ~ x
N=(g" & V=(¢", Vg
(2", ) , (&% VgD » Emergent effective relational description:
00 _ (At 04 A0 at A
X" = (‘p X ‘P) M= —i(' %) e Small clock quantum fluctuations.
. S /A0
> Observables <+ collective operators on Fock space. e Effective Hamiltonian Hy , ~ (n >UX0'

> <O>0xo = O[&]|xo=xo:
functionals of &
localized at x°.

Ison-Ewing 1602.05881; Jercher, O
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Macroscopic cosmological variables and effective relationality

Spatial relational homogeneity:
o depends on a MCMF “clock” scalar field x°
(D = minisuperspace + clock)

Collective Observables Relationality

Number, volume (determined e.g. by the mapping with > Averaged evolution wrt X is physical:
LQG) and matter operators (notation: (-, -) :/dxodga):

(e, =X, /(R), , ~x°

N =(p", vV =(a", Vip
(2", ) (&% VgD » Emergent effective relational description:
20 = (o1, x% A° = —i(g", 8ng .
=\$PX® =—i(¢", %p) e Small clock quantum fluctuations.
. [ /A0
> Observables <+ collective operators on Fock space. e Effective Hamiltonian Hy, = (n >UX0'

A - " _\F . 12,0
L <O>gxo = O[6]|x>=x:  Wavefunction <V>"i - IU Volo["(<) » v =j e N/2 (EPRL);

functionals of & : N
localized at x°. SR <N>“i = 2 157 (x°) > v =p € R (ext. BC).
v

Ison-Ewing 1602.05881; Jercher, O
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Effective relational homogeneous volume dynamics

(Relational) Homogeneity Isotropy
> o depends on a single clock MCFM field XO. > o depends only on a single rep. label v.
» D = minisuperspace + clock. > v € N/2 (EPRL-like) or v € R (ext. BC).

Volume operator captures the relevant physics: V= (\A/)a; = I vai %), p=15|
v
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Effective relational homogeneous volume dynamics

(Relational) Homogeneity Isotropy
> o depends on a single clock MCFM field XO. > o depends only on a single rep. label v.
» D = minisuperspace + clock. > v € N/2 (EPRL-like) or v € R (ext. BC).

Volume operator captures the relevant physics: V= (\A/)a; = I vai %), p=15|
v

f : 5 . .
P t Effective relational Freidmann dynamics ]ﬁ

2
(V’ )2 N (232 Vupusen(or,)V/Ee — @ /0% + u%ﬂ%) V728, Ve [E0 + 2 0]

3%, Vuri 1% £, Vor?

3v
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Effective relational homogeneous volume dynamics

(Relational) Homogeneity

Isotropy

> o depends on a single clock MCFM field x°.

» D = minisuperspace + clock.

Volume operator captures the relevant physics:

[
( L

> o depends only on a single rep. label v.
» v € N/2 (EPRL-like) or v € R (ext. BC).

VvV = (V)

v 2.0
=3 Vel o

Effective relational Freidmann dynamics ]ﬁ

|&]-

W 3%, Vork

1%

2
v

A

(v’ )2 N (ZIU Vi pusen(py,)V/Ev — Q202 +u%,p%>2 v o2f Vo [En +2p

£, Vor?

Classical limit (large N, late times)

> If ui is mildly dependent on v (or one v is
dominating) and equal to 37 G

(V'/3V)? ~ 45 G /3 —> flat FLRW

» Quantum fluctuations on clock and geometric
variables are under control.
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Effective relational homogeneous volume dynamics

(Relational) Homogeneity Isotropy

> o depends on a single clock MCFM field XO. > o depends only on a single rep. label v.

» D = minisuperspace + clock. > v € N/2 (EPRL-like) or v € R (ext. BC).

Volume operator captures the relevant physics: V= (\A/)a; = I vai %), p=15|
v

f : 5 . .
P t Effective relational Freidmann dynamics ]ﬁ

2
(L’)z (2, Vorusen(pl)VES = Q2% + 1373 V728, Ve [E0 + 2 0]
3v) — 3%, Vur? ’ v - L, Vor?

Classical limit (large N, late times) Bounce

> If ui is mildly dependent on v (or one v is » A non-zero volume bounce happens for a large
dominating) and equal to 37 G range of initial conditions (at least one Q,, # 0 or
one &, < 0).

’ 2 >
(V'/3V)" ~4nG/3 flat FLRW » The average singularity resolution may still be

. . spoiled by quantum effects on geometric and clock
» Quantum fluctuations on clock and geometric P v a g

. variables.
variables are under control.

Ison-Ewing 1
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Scalar perturbations fr GFT condensates

Simplest (slightly) relationally inhomogeneous system

LM, Oriti 2112.12677; Gerhart, Oriti, Wilson-Ewing 1805.03099.
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Scalar perturbations from GFT condensates

ogeneous system

Classical

> 4 MCMF reference fields (x°, x),

> 1 MCMF matter field ¢ dominating the e.m.
budget and relationally inhomog. wrt. x'.

LM, Oriti 2112.12677; Gerhart, Oriti, Wilson-Ewing 1805.03099.
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Scalar perturbations from GFT condensates

plest (slightly) relationally inhomogeneous system

Classical Quantum
> 4 MCMF reference fields (XO, Xi), > (ga, X", ¢) depends on 5 discretized scalar
> 1 MCMF matter field ¢ dominating the e.m variables and is associated to spacelike tetrahedra.
budget and relationally inhomog. wrt. X’.A > Scrr respecting the classical matter symmetries.

LM, Oriti 2112.12677; Gerhart, Oriti, Wilson-Ewing 1805.03099.
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Scalar perturbations from GFT condensates

plest (slightly) relationally inhomogeneous system

Quantum

Classical

> (ga, X", ¢) depends on 5 discretized scalar

> 4 MCMF reference fields (x°, x),
variables and is associated to spacelike tetrahedra.

> 1 MCMF matter field ¢ dominating the e.m.

budget and relationally inhomog. wrt. x'. > SgeT respecting the classical matter symmetries.

Observables
notation: (-, -) :/d4xd¢dga
Xt= (@t x¢) f* =—i(@",0,0)
Only isotropic info: V/ :(@T, Vigl)

d=(¢"00) Ny =-i(d",0,0)

Mat. Vol. Frame

LM, Oriti 2112.12677; Gerhart, Oriti, Wilson-Ewing 1805.03099.
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Scalar perturbations from GFT condensates

plest (slightly) relationally inhomogeneous system

Classical Quantum

> 4 MCMF reference fields (x°, x'). > (g, X", ¢) depends on 5 discretized scalar
» 1 MCMF matter field ¢ dominating the e.m variables and is associated to spacelike tetrahedra.

budget and relationally inhomog. wrt. X[~ > SgeT respecting the classical matter symmetries.

Observables States
N

o notation: (-, ) 7/d xdédea » CPSs around x" = x", with
£ o . oA oA . . ; ; .
g XM= (SOT7 i) it = —l(goT, 9. P) e 1 lsotropic peaking on rods;
5 e &: lsotropic distribution of geometric data.
= . o nn @ el N ’
S Only isotropic info: V' =(3", V[2]) > Small relational &-inhomogeneities (& = pe'”):
= A = 0 s 0
S b=(pt, 00 M, =—i(¢h, 0,0 p=p(x)+p(,x"), 0=0(,x")+380(-, x").
2 b

LM, Oriti 2112.12677; Gerhart, Oriti, Wilson-Ewing 1805.03099.
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Scalar perturbations from GFT condensates

Observables States
ion: (-, -) = 4 de¢d " 7 .

o netation:l(s; )7/d RS > CPSs around x" = x", with
g M= (¢T7X“95) A = —i(¢T78u‘ﬁ) n: peaking on rods;
5 G: distribution of geometric data.

. N A

Only isotropic info: V =(&", V[2]) > Small relational &-inhomogeneities (& = pe'®):
+ _ 0 ' 7 0 '
=(¢', 99) = —i(¢",859) p=p(x")+0p(,x"), 0 =0(,x) +30(,x").

[ Late times volume and matter dynamics ]—\

single Dynamic equations

> Averaged q.e.0.m. (no interactions) — coupled egs. for (p, ).
for (V)U o0 (<l>)‘7 0

> Decoupling for a range of values of CPSs and large N (late times). label

677; Gerhart, Oriti, Wilson-
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Scalar perturbations from GFT condensates

Observables States
notation: (-, ) :/d4x(l¢(lga » CPSs around x" = x", with
° o
£ & A N B - . . ; .
g XH = (SOT7X“90) * = _’(S"T78u‘P) n: peaking on rods;
5 G: distribution of geometric data.
. N A ]
Only isotropic info: V =(&", V[2]) > Small relational &-inhomogeneities (& = pe'®):

— (¢, 49) = —i(¢",859) p = (X" +8p(-, x"), 0 = 8(-, x°) +56(-, x").

p [ Late times volume and matter dynamics ]—\

> Averaged q.e.o.m. (no interactions) — coupled egs. for (p, 6). single  Dynamic equations
for (V)Uxu, (d))uxu.

> Decoupling for a range of values of CPSs and large N (late times). label
Background

~ Matching with GR possible.
» Macro. couplings defined in terms of GFT ones.

677; Gerhart, Oriti, Wilson-
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Scalar perturbations from GFT condensates

Observables States
notation: (-, ) :/d4x(l¢(lga » CPSs around x" = x", with
° o
£ & A N B - . . ; .
g XH = (SOT7X“90) * = _’(S"T78u‘P) n: peaking on rods;
5 G: distribution of geometric data.
. N A ]
Only isotropic info: V =(&", V[2]) > Small relational &-inhomogeneities (& = pe'®):

— (¢, 49) = —i(¢",859) p = (X" +8p(-, x"), 0 = 8(-, x°) +56(-, x").

p [ Late times volume and matter dynamics ]—\

> Averaged q.e.o.m. (no interactions) — coupled egs. for (p, 6). single  Dynamic equations
for (V)Uxu, (d))uxu.

> Decoupling for a range of values of CPSs and large N (late times). label

Background

~ Matching with GR possible. ~Large scales (“super-horizon”) GR matching.

» Macro. couplings defined in terms of GFT ones.

677; Gerhart, Oriti, Wilson-
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Scalar perturbations from GFT condensates

Observables States
notation: (-, ) :/d4x(l¢(lga » CPSs around x" = x", with
° o
£ & A N B - . . ; .
g XH = (SOT7X“90) * = _’(S"T78u‘P) n: peaking on rods;
5 G: distribution of geometric data.
. N A ]
Only isotropic info: V =(&", V[2]) > Small relational &-inhomogeneities (& = pe'®):

— (¢, 49) = —i(¢",859) p = (X" +8p(-, x"), 0 = 8(-, x°) +56(-, x").

p [ Late times volume and matter dynamics ]—\

> Averaged q.e.o.m. (no interactions) — coupled egs. for (p, 6). single  Dynamic equations
for (V)Uxu, (d))uxu.

> Decoupling for a range of values of CPSs and large N (late times). label

Background

~ Matching with GR possible. ~Large scales (“super-horizon”) GR matching.

» Macro. couplings defined in terms of GFT ones. of spatial derivative terms.

677; Gerhart, Oriti, Wilson-
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Super-horizon scalar perturbations

Observables States

8 "4
notation: (-, -) =/ d 1¢d, .
fon: (--) / xaodea » CPSs around x" = x", with

o

S X = (@t x"¢) A* = —i(¢",0,¢) 7: peaking on rods;

- . G: distribution of geometric data.
Only isotropic info: V = (g7, V[2]) > Small relational G-inhomogeneities (& = pefg):

= (2", ¢2) =—i(p',052) p= (-, x°) +8p(-, x*), 0= (-, x°) + 80(-, x*).

Super-horizon volume and matter dynamics

single Dynamic equations

> Averaged g.e.o.m. (no interactions) — coupled egs. for (p, ).
for (V) ., (®)

%)

> Restrict to super-horizon modes but study also early times. spin

Fischer. LM. Oriti (to appear): Bertschinger 0604485: LM. Oriti 2112.12677: Gielen. Mickel 2211.04500.
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Super-horizon scalar perturbations

Observables States

8 "4
notation: (-, -) =/ d 1¢d, .
fon: (--) / xaodea » CPSs around x" = x", with

o

S X = (@t x"¢) A* = —i(¢",0,¢) 7: peaking on rods;

- . G: distribution of geometric data.
Only isotropic info: V = (g7, V[2]) > Small relational G-inhomogeneities (& = pefg):

= (2", ¢2) =—i(p',052) p= (-, x°) +8p(-, x*), 0= (-, x°) + 80(-, x*).

Super-horizon volume and matter dynamics }ﬁ

single Dynamic equations

> Averaged g.e.o.m. (no interactions) — coupled egs. for (p, ).
for (V) ., (®)

%)

> Restrict to super-horizon modes but study also early times. spin
Modified gravity

» Dynamics of super-horizon scalar perturbations
can be obtained generically for MG theory.
at early times with effective GFT

volume dynamics.

Fischer. LM. Oriti (to abpear): Bertschinger 0604485: LM. Oriti 2112.12677: Gielen. Mickel 2211.04500.
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Super-horizon scalar perturbations

Observables States

8 "4
notation: (-, -) =/ d 1¢d, .
fon: (--) / xaodea » CPSs around x" = x", with

o

S X = (@t x"¢) A* = —i(¢",0,¢) 7: peaking on rods;

- . G: distribution of geometric data.
Only isotropic info: V = (g7, V[2]) > Small relational G-inhomogeneities (& = pefg):

= (2", ¢2) =—i(p',052) p= (-, x°) +8p(-, x*), 0= (-, x°) + 80(-, x*).

Super-horizon volume and matter dynamics }ﬁ

single Dynamic equations

> Averaged g.e.o.m. (no interactions) — coupled egs. for (p, ).
for (V) ., (®)

%)

> Restrict to super-horizon modes but study also early times. spin

Modified gravity

» Dynamics of super-horizon scalar perturbations  » Study super-horizon scalar perturbations by

can be obtained generically for MG theory. perturbing background QG volume equation.
at early times with effective GFT at early times with full effective
volume dynamics. GFT volume dynamics.

Fischer. LM. Oriti (to abpear): Bertschinger 0604485: LM. Oriti 2112.12677: Gielen. Mickel 2211.04500.

Luca Marchetti Developments in GFT Cosmology



Scalar perturbations from quantum correlations

Two-body correlations

Including timelike tetrahedra allows to better couple the physical frame: two-sector (+, —) GFT!

) = Ny exp(6 @T_ +1, @ T+ 50 QI + 5V +1, @ 5=) |0)

Collective states

Je Pithis (to appear cher. Oriti. Pithis 2206.15442.
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Scalar perturbations from quantum correlations

Two-body correlations

Including timelike tetrahedra allows to better couple the physical frame: two-sector (+, —) GFT!
) = Ny exp(6 @ I_ + L @7+ 56 @ I_ + 6V + L. ® 6=) |0)

Background

Collective states

> &= (o, gﬁi): spacelike condensate.
> 7= (, ¢‘>T_) timelike condensate.

» 7, o peaked; ¥, & homogeneous.

Je Pithis (to appear cher. Oriti. Pithis 2206.15442.
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Scalar perturbations from quantum correlations

Two-body correlations

Including timelike tetrahedra allows to better couple the physical frame: two-sector (+, —) GFT!
) = Ny exp(6 @ I_ + L @7+ 56 @ I_ + 6V + L. ® 6=) |0)

Background Perturbations

> &= (o, gﬁi): spacelike condensate.  » zﬁ:(&tb, 951@]:) g\\V:(zS\U, @1@1), zE:(éE, elot).

Collective states

P = (7 ¢>T_): timelike condensate.  » §®, W and 4= small and relationally inhomogeneous.

T, o peaked; ¥, & homogeneous. » Perturbations = nearest neighbour 2-body correlations.

his 2206.15442.
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Scalar perturbations from quantum correlations

Two-body correlations

Including timelike tetrahedra allows to better couple the physical frame: two-sector (+, —) GFT!

%]

Q

g

] = . BR = =

% [V) =Nypexp(6 QI_ +1L T+ 6P QI + 6V + 1, ® §=) |0)

[

>

g Background Perturbations

S > &=(0,9"): spacelike condensate. > 3B=(50,3l1), SV =(ow,plpl ) 6==(oZ, a1 p1).

P = (7 ¢>T_): timelike condensate.  » §®, W and 4= small and relationally inhomogeneous.

T, o peaked; ¥, & homogeneous. » Perturbations = nearest neighbour 2-body correlations.

Scalar perturbations

> 2 mean-field egs. for 3 variables (6, §V, §=):
(65/6¢1), =0=(55/6¢")

> Late times and single (spacelike) rep. label.

his 2206.15442.
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Scalar perturbations from quantum correlations

Two-body correlations

Including timelike tetrahedra allows to better couple the physical frame: two-sector (+, —) GFT!
) = Ny exp(6 @ I_ + L @7+ 56 @ I_ + 6V + L. ® 6=) |0)

Background Perturbations
> & =(0,L): spacelike condensate. > 6b= (50, plpl), sU=(sw,plp"), 52=(6=, 0" 51).

P = (7 ¢>T_): timelike condensate.  » §®, W and 4= small and relationally inhomogeneous.

Collective states

T, o peaked; ¥, & homogeneous. » Perturbations = nearest neighbour 2-body correlations.

Scalar perturbations

> 2 mean-field egs. for 3 variables (6, §V, §=): 8V, o Re(8W, 57) + Re(60, 5_2)
AT — 0= AT
<6S/&p+>w =0 <5S/5¢*>w > Physical behavior of spatial derivative
> Late times and single (spacelike) rep. label. terms fixes dynamical freedom (e.g. in 6®).

his 2206.15442.
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Scalar perturbations from quantum correlations

Two-body correlations

Including timelike tetrahedra allows to better couple the physical frame: two-sector (+, —) GFT!
) = Ny exp(6 @ I_ + L @7+ 56 @ I_ + 6V + L. ® 6=) |0)

Background Perturbations
> & =(0,L): spacelike condensate. > 6b= (50, plpl), sU=(sw,plp"), 52=(6=, 0" 51).

P = (7 ¢>T_): timelike condensate.  » §®, W and 4= small and relationally inhomogeneous.

Collective states

T, o peaked; ¥, & homogeneous. » Perturbations = nearest neighbour 2-body correlations.

Scalar perturbations

> 2 mean-field egs. for 3 variables (6, §V, §=): 5V o Re(3W, 57) + Re(6® &2)
W ) )

st 0= AT
<65/m'0+>‘/1 =0= <§S/6¢*>w > Physical behavior of spatial derivative

> Late times and single (spacelike) rep. label. terms fixes dynamical freedom (e.g. in 6®).

( i Late times volume perturbations J N

> QG corrections to trans-Planckian modes dynamics. » GR matching at larger scales.
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