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The QG perspective on Cosmology

Homogeneous

sector

Inhomogeneities:

initial conditions

Inhomogeneities:

dynamics

▶ Impact of singularity resolution on pert.?

▶ Is the evolution of pert. modified by QG effects?

▶ . . .

▶ Are these effects observable?

▶ Nature of dark matter?

▶ Singularity resolution?

▶ . . .

▶ Nature of dark energy?

▶ Geometric inflation?

▶ Is the vacuum state a QG

modified BD vacuum?
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▶ Are these effects observable?
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Challenges in background independent and emergent QG:

▶ How to define (in)homogeneity?

▶ How to extract macroscopic dynamics?

▶ How to construct cosmological geometries?

▶ . . .

Relational strategy

Coarse-graining/

collective behavior
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Introduction to Group Field Theory



The (T)GFT approach to quantum gravity

(Tensorial) Group Field Theories:

theories of a field φ : Gd → C defined
on d copies of a group manifold G .

d is the dimension of the “spacetime to be” (d = 4)

and G is the local gauge group of gravity,

G = SL(2,C) or, in some models, G = SU(2).

ciao

ciao Quanta: Spacetime atomsy

Quanta are d − 1-simplices decorated with group theoretic data:

▶ Appropriate (geometricity) constraints allow the simplicial interpretation.

▶ Group (Lie algebra) variables associated to discretized gravitational quantities.

ciao Processes: Discrete spacetimes

SGFT obtained by comparing ZGFT with simplicial gravity path integral.

▶ Non-local and combinatorial interactions mimic the gluing

of d − 1-simplices into d-simplices.

▶ Γ are dual to spacetime triangulations.

ZGFT =
∑
Γ

wΓ({λγ})AΓ = discrete gravity path-integral.

GFTs are QFTs of atoms of spacetime.

H1-p =

g4

g1

g2

g3
•

Oriti 0912.2441; Oriti 1408.7112; Krajewski 1210.6257; Gielen, Oriti 1311.1238; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Sindoni 1602.08104; . . .
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Group Field Theory and matter: scalar fields

Group Field Theories: theories of a field
φ : Gd → C defined on the product Gd .

d is the dimension of the “spacetime to be” (d = 4)

and G is the local gauge group of gravity,

G = SL(2,C) or, in some models, G = SU(2).

ciao

ciao Quanta: Spacetime atomsy

Quanta are d − 1-simplices decorated with quantum geometric and scalar data:

▶ Geometricity constraints imposed analogously as before.

▶ Scalar field discretized on each d-simplex: each

d − 1-simplex composing it carries values χ ∈ Rdl .

ciao Processes: Discrete spacetimes

SGFT obtained by comparing ZGFT with simplicial gravity + scalar fields path integral.

▶ Geometric data enter interactions in a non-local and

combinatorial fashion.

▶ Scalar field data are local in interactions.

▶ For minimally coupled, free, massless scalars:

K(ga, gb ;χα, χα′) = K(ga, gb ; (χα − χα′)2)

V5(g (1)
a , . . . , g (5)

a ,χ) = V5(g (1)
a , . . . , g (5)

a )

H1-p =

g4

g1

g2

g3
•

Domain of GFTs is the space of (discretized) continuum fields

Li, Oriti, Zhang 1701.08719; Oriti 0912.2441; Gielen, Oriti 1311.1238; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Sindoni 1602.08104; . . .
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The main ingredients
yC

o
lle

ct
iv
e
st
a
te
sy (ciaoGFT condensates

▶ From the GFT perspective, continuum geometries are associated to large number of quanta.

▶ The simplest states that can accommodate infinite number of quanta are condensate states:

|σ⟩ = Nσ exp

[∫
d
dlχ

∫
dga σ(ga, χ

α)φ̂†(ga, χ
α)

]
|0⟩ .

E
ff
ec
ti
ve

d
yn

a
m
ic
s (ciaoMean-field approximation

▶ When interactions are small (certainly satisfied in an appropriate regime) the dynamics of σ is:〈
δS[φ̂, φ̂†]

δφ̂(gI , xα)

〉
σ

=

∫
dha

∫
dχK(ga, ha, (xα − χα)2)σ(ha, χα) + λ

δV [φ, φ∗]

δφ∗(ga, xα)

∣∣∣∣
φ=σ

= 0 .

▶ Equivalent to mean-field (saddle-point) approx. of ZGFT (reliable for physical models).

R
el
a
ti
o
n
a
lit
y

(ciaoCondensate Peaked States(

▶ Constructing relational observables in full QG is difficult (QFT with no continuum intuition).

▶ Relational localization implemented at an effective level on observable averages on condensates.

▶ If χµ constitute a physical reference frame, this can be achieved by assuming

σ = (fixed peaking function η)× (dynamically determined reduced wavefunction σ̃)

LM, Oriti, Pithis, Thürigen 2211.12768 ; LM, Oriti 2008.02774-2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Oriti, Sindoni 1311.1238.
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▶ Equivalent to mean-field (saddle-point) approx. of ZGFT (reliable for physical models).
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(ciaoCondensate Peaked States(

▶ Constructing relational observables in full QG is difficult (QFT with no continuum intuition).

▶ Relational localization implemented at an effective level on observable averages on condensates.

▶ If χµ constitute a physical reference frame, this can be achieved by assuming

σ = (fixed peaking function η)× (dynamically determined reduced wavefunction σ̃)
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Group Field Theory Cosmology



Homogeneous sector



Effective relational homogeneous volume dynamics
A
ss
u
m
p
ti
o
n
s (Relational) Homogeneity Isotropy

▶ σ depends on a single clock MCFM field χ0.

▶ D = minisuperspace + clock.

▶ σ depends only on a single rep. label υ.

▶ υ ∈ N/2 (EPRL-like) or υ ∈ R (ext. BC).

Volume operator captures the relevant physics: V ≡ ⟨V̂ ⟩σx0
=
∑∫

υ

Vυρ
2
υ(x

0) , ρ ≡ |σ̃|.

Effective relational Freidmann dynamics(
V ′

3V

)2

≃
(

2
∑∫
υ
Vυρυsgn(ρ

′
υ)
√
Eυ − Q2

υ/ρ
2
υ + µ2

υρ
2
υ

3
∑∫
υ
Vυρ2υ

)2

,
V ′′

V
≃

2
∑∫
υ
Vυ
[
Eυ + 2µ2

υρ
2
υ

]
∑∫
υ
Vυρ2υ

Classical limit (large N, late times) Bounce

▶ If µ2
υ is mildly dependent on υ (or one υ is

dominating) and equal to 3πG

(V ′
/3V )2 ≃ 4πG/3 flat FLRW

▶ Quantum fluctuations on clock and geometric

variables are under control.

▶ A non-zero volume bounce happens for a large

range of initial conditions (at least one Qυ ̸= 0 or

one Eυ < 0).

▶ The average singularity resolution may still be

spoiled by quantum effects on geometric and clock

variables.

LM, Oriti 2008.02774; LM, Oriti 2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Oriti, Pithis 2112.00091; . . .
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Inhomogeneous sector (dynamics)



Scalar perturbations from GFT condensates

Simplest (slightly) relationally inhomogeneous system

Observables

notation: (·, ·) =

∫
d
4
χdϕdga

F
ra
m
e

X̂µ = (φ̂†
, χ
µ
φ̂) Π̂µ = −i(φ̂†

, ∂µφ̂)

V
o
l.

Only isotropic info: V̂ =(φ̂†
,V [φ̂])

M
a
t.

Φ̂ = (φ̂†
, ϕφ̂) Π̂ϕ = −i(φ̂†

, ∂ϕφ̂)

States

▶ CPSs around χµ = xµ, with

• η: Isotropic peaking on rods;

• σ̃: Isotropic distribution of geometric data.

▶ Small relational σ̃-inhomogeneities (σ̃ = ρe iθ):

ρ = ρ̄(·, χ0) + δρ(·, χµ), θ = θ̄(·, χ0) + δθ(·, χµ).

LM, Oriti 2112.12677; Gerhart, Oriti, Wilson-Ewing 1805.03099.
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Scalar perturbations from GFT condensates

Observables
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▶ Small relational σ̃-inhomogeneities (σ̃ = ρe iθ):

ρ = ρ̄(·, χ0) + δρ(·, χµ), θ = θ̄(·, χ0) + δθ(·, χµ).

Late times volume and matter dynamics

▶ Averaged q.e.o.m. (no interactions) −→ coupled eqs. for (ρ, θ).

▶ Decoupling for a range of values of CPSs and large N (late times).

single

label

Dynamic equations

for ⟨V̂ ⟩σx0
, ⟨Φ̂⟩σx0

.

LM, Oriti 2112.12677; Gerhart, Oriti, Wilson-Ewing 1805.03099.
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Scalar perturbations from GFT condensates
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single

label

Dynamic equations

for ⟨V̂ ⟩σx0
, ⟨Φ̂⟩σx0

.

Background

Matching with GR possible.

▶ Macro. couplings defined in terms of GFT ones.

LM, Oriti 2112.12677; Gerhart, Oriti, Wilson-Ewing 1805.03099.
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Scalar perturbations from GFT condensates

Observables
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• σ̃: Isotropic distribution of geometric data.

▶ Small relational σ̃-inhomogeneities (σ̃ = ρe iθ):

ρ = ρ̄(·, χ0) + δρ(·, χµ), θ = θ̄(·, χ0) + δθ(·, χµ).

Late times volume and matter dynamics

▶ Averaged q.e.o.m. (no interactions) −→ coupled eqs. for (ρ, θ).

▶ Decoupling for a range of values of CPSs and large N (late times).

single

label

Dynamic equations

for ⟨V̂ ⟩σx0
, ⟨Φ̂⟩σx0

.

Background Perturbations

Matching with GR possible.

▶ Macro. couplings defined in terms of GFT ones.

Large scales (“super-horizon”) GR matching.

▶ Unphysical behavior of spatial derivative terms.

LM, Oriti 2112.12677; Gerhart, Oriti, Wilson-Ewing 1805.03099.
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Super-horizon scalar perturbations

Observables

notation: (·, ·) =

∫
d
4
χdϕdga

F
ra
m
e

X̂µ = (φ̂†
, χ
µ
φ̂) Π̂µ = −i(φ̂†

, ∂µφ̂)

V
o
l.

Only isotropic info: V̂ =(φ̂†
,V [φ̂])

M
a
t.

Φ̂ = (φ̂†
, ϕφ̂) Π̂ϕ = −i(φ̂†

, ∂ϕφ̂)

States

▶ CPSs around χµ = xµ, with

• η: Isotropic peaking on rods;

• σ̃: Isotropic distribution of geometric data.

▶ Small relational σ̃-inhomogeneities (σ̃ = ρe iθ):

ρ = ρ̄(·, χ0) + δρ(·, χµ), θ = θ̄(·, χ0) + δθ(·, χµ).

Super-horizon volume and matter dynamics

▶ Averaged q.e.o.m. (no interactions) −→ coupled eqs. for (ρ, θ).

▶ Restrict to super-horizon modes but study also early times.

single

spin

Dynamic equations

for ⟨V̂ ⟩σx0
, ⟨Φ̂⟩σx0

Fischer, LM, Oriti (to appear); Bertschinger 0604485; LM, Oriti 2112.12677; Gielen, Mickel 2211.04500.
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Super-horizon scalar perturbations

Observables

notation: (·, ·) =
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µ
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o
l.

Only isotropic info: V̂ =(φ̂†
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M
a
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, ϕφ̂) Π̂ϕ = −i(φ̂†
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▶ Dynamics of super-horizon scalar perturbations
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▶ No matching at early times with effective GFT

volume dynamics.
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Scalar perturbations from quantum correlations
yC

o
lle

ct
iv
e
st
a
te
sy

(ciaoTwo-body correlations(

Including timelike tetrahedra allows to better couple the physical frame: two-sector (+,−) GFT!

|ψ⟩ = Nψ exp(σ̂ ⊗ I− + I+ ⊗ τ̂ + δ̂Φ⊗ I− + δ̂Ψ + I+ ⊗ δ̂Ξ) |0⟩

Background Perturbations

▶ σ̂ = (σ, φ̂†
+): spacelike condensate.

▶ τ̂ = (τ, φ̂†
−): timelike condensate.

▶ τ , σ peaked; τ̃ , σ̃ homogeneous.

▶ δ̂Φ=(δΦ, φ̂†
+φ̂

†
+), δ̂Ψ=(δΨ, φ̂†

+φ̂
†
−), δ̂Ξ=(δΞ, φ̂†

−φ̂
†
−).

▶ δΦ, δΨ and δΞ small and relationally inhomogeneous.

▶ Perturbations=nearest neighbour 2-body correlations.

E
ff
ec
ti
ve

d
yn

a
m
ic
s

(ciaoScalar perturbations

▶ 2 mean-field eqs. for 3 variables (δΦ, δΨ, δΞ):

⟨δS/δφ̂†
+⟩ψ = 0 = ⟨δS/δφ̂†

−⟩ψ
▶ Late times and single (spacelike) rep. label.

δVψ ∝ Re(δΨ, σ̃τ̃) + Re(δΦ, σ̃2)

▶ Physical behavior of spatial derivative

terms fixes dynamical freedom (e.g. in δΦ).

Late times volume perturbations

▶ QG corrections to trans-Planckian modes dynamics. ▶ GR matching at larger scales.

Jercher, LM, Pithis (to appear); Jercher, Oriti, Pithis 2206.15442.
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Relationality

via peaking

Microscopic

description

Based on funda-

mental GFT quanta

Coarse-graining

via mean-field

Collective states

(condensates)

Macroscopic

description

Based on averages of

collective observables

Cosmological

physics



Inhomogeneous

sector

Early

times

Late

times
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Inhomogeneous

sector

Early

times

Late

times

Results

Super-horizon analysis with MCMF scalar fields:

Scalar pert. dynamics differs from any MG

model.

Full QG scalar pert. dynamics differs from

QG perturbed background one.

LM, Oriti 2112.12677; Fischer, LM, Oriti (to appear); Jercher, LM, Pithis (to appear); Gerhart, Oriti, Wilson-Ewing 1805.03099.
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sector

Early

times

Late

times

Results Results

Super-horizon analysis with MCMF scalar fields:

Scalar pert. dynamics differs from any MG

model.

Full QG scalar pert. dynamics differs from

QG perturbed background one.

All scales analysis with MCMF scalar fields:

Manifest causal properties of quanta allow for

a careful coupling of the physical ref. frame.

Scalar pert. ←→ quantum correlations!

Late-times volume pert. dynamics matches

GR at large scales. . .

. . . but receives corrections for trans-Planckian

modes!

LM, Oriti 2112.12677; Fischer, LM, Oriti (to appear); Jercher, LM, Pithis (to appear); Gerhart, Oriti, Wilson-Ewing 1805.03099.
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Inhomogeneous

sector

Early

times

Late

times

Perspectives Perspectives

Different fundamental d.o.f. −→ different

perturbation dynamics?

Scalar field perturbations? EFT description?

▶ Generalization to physically interesting fluids.

▶ Extension to VT modes: more observables!

▶ Initial conditions and power spectra?

• Fock quantization of early-times dynamics.

• Can we derive it from full QG?

Physical (perhaps observable) consequences of

trans-Planckian mismatch?

Scalar field perturbations? EFT description?

▶ Generalization to physically interesting fluids.

▶ Extension to VT modes: more observables!

▶ How do quantum perturbations classicalize?

Fischer, LM, Oriti (to appear); Jercher, LM, Pithis (to appear); Dekhil, Liberati, Oriti (to appear); Calcinari, Gielen 2210.03149.
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Backup



Group Field Theory and spinfoam models
D
efi

n
it
io
n

Group Field Theories: theories of

a field φ : G d → C defined on

d copies of a group manifold G .

d is the dimension of the “spacetime to be”

(d = 4) and G is the local gauge group of gravity,

G = SL(2,C) or, in some cases, G = SU(2).

A
ct
io
n

S[φ, φ̄] =

∫
dgaφ̄(ga)K[φ](ga) +

∑
γ

λγ

nγ
TrVγ [φ] + c.c. .

▶ Interaction terms are combinatorially non-local.

▶ Field arguments convoluted pairwise following the combinatorial

pattern dictated by the graph γ:

TrVγ [φ] =

∫ nγ∏
i=1

dga
∏

(a,i ;b,j)

Vγ(g (i)
a , g

(j)
b )

nγ∏
i=1

φ(g (i)
a ) .

g′4g′3g′2g′1

g1 g2 g3 g4

K y 7

g′9

g′6

g′2

g10

g′10
g′8

g′5
g′1

g1
g2

g3
g4

g′4
g5
g6
g7

g′7
g′3

g′8
g9

V5

P
ar
ti
ti
o
n
fu
n
ct
io
n

Z [φ, φ̄] =
∑
Γ

wΓ({λγ})AΓ

= complete spinfoam model.

▶ Γ = stranded diagrams dual to d-dimensional cellular complexes of arbitrary topology.

▶ Amplitudes AΓ = sums over group theoretic data associated to the cellular complex.

▶ K and Vγ chosen to match the desired spinfoam model.

Oriti 1110.5606; Reisenberger, Rovelli 0002083; De Pietri, Petronio 0004045; Gurau 1006.0714; Baratin, Oriti 1002.4723; Finocchiaro, Oriti 1812.03550.
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Group Field Theory and Loop Quantum Gravity
F
u
n
d
a
m
en

ta
l
q
u
a
n
ta

(ciaoOne-particle Hilbert space(

The one-particle Hilbert space is Htetra ⊂ ⊗4
a=1H∆a (subset defined by the imposition of constraints)

Lie algebra (metric)

H∆a = L2(g)

Lie group (connection)

H∆a = L2(G)

Representation space

H∆a =
⊕

Ja
HJa

(ciaoConstraints(

Geometricity constraints (appropriately encoded in K and Vγ) allow for a

d − 1-simplicial interpretation of the fundamental quanta:

Closure Simplicity∑
a Ba = 0

(faces of the tetrahedron close).

▶ X · (B − γ ⋆ B)a = 0 (EPRL);

▶ X · Ba = 0 (BC).
BgB4Bg

B1
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The Group Field Theory Fock space

Tetrahedron wavefunction

φ(g1, . . . , g4)

(subject to constraints)

GFT field operator

φ̂(g1, . . . , g4)

(subject to constraints)

G
F
T

F
o
ck

sp
a
ce FGFT =

∞⊕
V=0

sym
[
H(1)

tetra ⊗H
(2)
tetra ⊗ . . .H

(V )
tetra

]
▶ FGFT generated by action of φ̂†(ga) on |0⟩, with [φ̂(ga), φ̂

†(g ′
a )] = IG (ga, g ′

a ).

▶ HΓ ⊂ FGFT, HΓ space of states associated to connected simplicial complexes Γ.

▶ Generic states do not correspond to connected simplicial lattices nor classical simplicial geometries.

▶ Similar to HLQG but also different: no continuum intuition, orthogonality wrt nodes, not graphs.

O
p
er
a
to
rs Volume operator V̂ =

∫
dg (1)

a dg (2)
a V (g (1)

a , g (2)
a )φ̂†(g (1)

a )φ̂(g (2)
a ) =

∑
ja,ma,ι

Vja,ιφ̂
†
ja,ma,ι

φ̂ja,ma,ι.

▶ Generic second quantization prescription to build a m + n-body operator: sandwich matrix

elements between spin-network states between m powers of φ̂† and n powers of φ̂.

Many-body

Theory

Oriti 1310.7786; Oriti 1408.7112; Sahlman, Sherif 2302.03612.
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Macroscopic cosmological variables and effective relationality

Spatial relational homogeneity:

σ depends on a MCMF “clock” scalar field χ0

(D = minisuperspace + clock)

Collective Observablesp

Number, volume (determined e.g. by the mapping with

LQG) and matter operators (notation: (·, ·) =

∫
dχ

0
dga):

N̂ = (φ̂†
, φ̂) V̂ = (φ̂†

,V [φ̂])

X̂ 0 =
(
φ̂

†
, χ

0
φ̂
)

Π̂
0
= −i(φ̂†

, ∂0φ̂)

▶ Observables ↔ collective operators on Fock space.

Relationality

▶ Averaged evolution wrt x0 is physical:

⟨χ̂0⟩σx0
≡ ⟨X̂ 0⟩σx0

/ ⟨N̂⟩σx0
≃ x0

▶ Emergent effective relational description:

• Small clock quantum fluctuations.

• Effective Hamiltonian Hσx0 ≃⟨Π̂0⟩σx0
.

▶ ⟨Ô⟩σx0
= O[σ̃]|χ0=x0 :

functionals of σ̃

localized at x0.

⟨V̂ ⟩σ0
x
=
∑∫

υ

Vυ|σ̃υ|2(x0)

⟨N̂⟩σ0
x
=
∑∫

υ

|σ̃υ|2(x0)

▶ υ = j ∈ N/2 (EPRL);
▶ υ = ρ ∈ R (ext. BC).

Wavefunction

isotropy

Oriti 2008.02774; LM, Oriti 2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Oriti, Pithis 2112.00091.
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