

Relational physics from an emergent quantum gravity perspective

In collaboration with: D. Oriti, E. Wilson-Ewing, S. Gielen, A. Polaczek

Luca Marchetti

Institute for Quantum Gravity FAU Erlangen-Nürnberg 26 April 2023

Department of Mathematics and Statistics UNB Fredericton

Overview

• The relational strategy

- The classical and quantum perspectives
- The emergent perspective and effective methods

• Introduction to Group Field Theory

- Connection with spinfoam models and LQG
- Including scalar matter
- Relational strategy and GFTs

• Effective approaches

- General considerations
- Coherent Peaked States
- State-agnostic approach

Conclusions

The relational strategy

Quite well understood from a classical perspective, less from a quantum perspective.

Isham 9210011; Rovelli Class. Quantum Grav. 8 297; Dittrich 0507106; Tambornino 1109.0740; Giesel, Thiemann 0711.0119 ...

Quite well understood from a classical perspective, less from a quantum perspective.

- Evolution in \(\tau\) is relational.
- $F_{f,T}(\tau)$ is a very complicated function.
- Applications almost only for very simple systems.

Isham 9210011; Rovelli Class. Quantum Grav. 8 297; Dittrich 0507106; Tambornino 1109.0740; Giesel, Thiemann 0711.0119 ...

Quite well understood from a classical perspective, less from a guantum perspective.

- Perspective neutral.
 - Poor control of the physical Hilbert space.

- ▶ Take two phase space functions, f and T with $\{T, C_H\} \neq 0$ (T relational clock).
- The relational extension $F_{f,T}(\tau)$ of f encodes the value of f when T reads τ .
- Evolution in τ is relational.
- $F_{f,T}(\tau)$ is a very complicated function.
- Applications almost only for very simple systems. ►

Isham 9210011: Rovelli Class, Quantum Grav. 8 297: Dittrich 0507106: Tambornino 1109.0740: Giesel, Thiemann 0711.0119

Quite well understood from a classical perspective, less from a quantum perspective.

Physical localization via relational observables:

- ► Take two phase space functions, f and T with $\{T, C_H\} \neq 0$ (T relational clock).
- The relational extension $F_{f,T}(\tau)$ of f encodes the value of f when T reads τ .
- Evolution in \(\tau\) is relational.
- F_{f,T}(τ) is a very complicated function.
- Applications almost only for very simple systems.

Quantum GR

Dirac approach: Quantize first.

- Perspective neutral.
- Poor control of the physical Hilbert space.

Reduced approach: Relationality first.

- No quantum constraint to solve.
- Not perspective neutral. Too complicated to implement in most of the cases.

Isham 9210011; Rovelli Class. Quantum Grav. 8 297; Dittrich 0507106; Tambornino 1109.0740; Giesel, Thiemann 0711.0119 ...

Luca Marchetti

A genuinely new dimension of the problem arises for emergent QG theories.

LM, Oriti 2008.02774; Giulini 0603087; Kuchar Int.J.Mod.Phys.D 20(2011); Isham 9210011; Rovelli Class. Quantum Grav. 8 297;

LM, Oriti 2008.02774; Giulini 0603087; Kuchar Int.J.Mod.Phys.D 20(2011); Isham 9210011; Rovelli Class. Quantum Grav. 8 297;

result of a coarse-graining of some fundamental d.o.f.

LM, Oriti 2008.02774; Giulini 0603087; Kuchar Int.J.Mod.Phys.D 20(2011); Isham 9210011; Rovelli Class. Quantum Grav. 8 297;

LM, Oriti 2008.02774; Giulini 0603087; Kuchar Int.J.Mod.Phys.D 20(2011); Isham 9210011; Rovelli Class. Quantum Grav. 8 297;

Introduction to Group Field Theory

Definition

Group Field Theories: theories of a field φ : $G^d \to \mathbb{C}$ defined on *d* copies of a group manifold *G*. d is the dimension of the "spacetime to be" (d = 4) and G is the local gauge group of gravity, $G = SL(2, \mathbb{C})$ or, in some cases, G = SU(2).

Oriti 1110.5606; Reisenberger, Rovelli 0002083; De Pietri, Petronio 0004045; Gurau 1006.0714; Baratin, Oriti 1002.4723; Finocchiaro, Oriti 1812.03550.

Definitior

Action

Group Field Theories: theories of a field φ : $G^d \to \mathbb{C}$ defined on *d* copies of a group manifold *G*. *d* is the dimension of the "spacetime to be" (*d* = 4) and *G* is the local gauge group of gravity, $G = SL(2, \mathbb{C})$ or, in some cases, G = SU(2).

$$\mathcal{S}[arphi,ar{arphi}] = \int \mathrm{d}g_{a}ar{arphi}(g_{a})\mathcal{K}[arphi](g_{a}) + \sum_{\gamma}rac{\lambda_{\gamma}}{n_{\gamma}}\,\mathsf{Tr}_{\mathcal{V}\gamma}[arphi] + ext{c.c.}$$

- Interaction terms are combinatorially non-local.
- Field arguments convoluted pairwise following the combinatorial pattern dictated by the graph γ:

$$\mathsf{Tr}_{\mathcal{V}_{\gamma}}[\varphi] = \int \prod_{i=1}^{n_{\gamma}} \mathrm{d}g_{a} \prod_{(a,i;b,j)} \mathcal{V}_{\gamma}(g_{a}^{(i)}, g_{b}^{(j)}) \prod_{i=1}^{n_{\gamma}} \varphi(g_{a}^{(i)})$$

Oriti 1110.5606; Reisenberger, Rovelli 0002083; De Pietri, Petronio 0004045; Gurau 1006.0714; Baratin, Oriti 1002.4723; Finocchiaro, Oriti 1812.03550.

Group Field Theories: theories of a field φ : $G^d \to \mathbb{C}$ defined on d copies of a group manifold G. *d* is the dimension of the "spacetime to be" (*d* = 4) and *G* is the local gauge group of gravity, $G = SL(2, \mathbb{C})$ or, in some cases, G = SU(2).

$$S[arphi,ar{arphi}] = \int \mathrm{d}g_{a}ar{arphi}(g_{a})\mathcal{K}[arphi](g_{a}) + \sum_{\gamma}rac{\lambda_{\gamma}}{n_{\gamma}}\operatorname{Tr}_{\mathcal{V}\gamma}[arphi] + \mathrm{c.c.}$$

- Interaction terms are combinatorially non-local.
- Field arguments convoluted pairwise following the combinatorial pattern dictated by the graph γ:

$$\mathsf{Tr}_{\mathcal{V}_{\gamma}}[\varphi] = \int \prod_{i=1}^{n_{\gamma}} \mathrm{d}g_{a} \prod_{(a,i;b,j)} \mathcal{V}_{\gamma}(g_{a}^{(i)}, g_{b}^{(j)}) \prod_{i=1}^{n_{\gamma}} \varphi(g_{a}^{(i)}) \,.$$

$$Z[arphi,ar{arphi}] = \sum_{\Gamma} w_{\Gamma}(\{\lambda_{\gamma}\})A_{\Gamma}$$

- Γ = stranded diagrams dual to *d*-dimensional cellular complexes of arbitrary topology.
- Amplitudes A_{Γ} = sums over group theoretic data associated to the cellular complex.

Oriti 1110.5606; Reisenberger, Rovelli 0002083; De Pietri, Petronio 0004045; Gurau 1006.0714; Baratin, Oriti 1002.4723; Finocchiaro, Oriti 1812.03550

Luca Marchetti

Action

Partition function

Group Field Theories: theories of a field φ : $G^d \to \mathbb{C}$ defined on d copies of a group manifold G. *d* is the dimension of the "spacetime to be" (*d* = 4) and *G* is the local gauge group of gravity, $G = SL(2, \mathbb{C})$ or, in some cases, G = SU(2).

$$S[arphi,ar{arphi}] = \int \mathrm{d}g_{a}ar{arphi}(g_{a})\mathcal{K}[arphi](g_{a}) + \sum_{\gamma}rac{\lambda_{\gamma}}{n_{\gamma}}\operatorname{Tr}_{\mathcal{V}\gamma}[arphi] + \mathrm{c.c.}$$

- Interaction terms are combinatorially non-local.
- Field arguments convoluted pairwise following the combinatorial pattern dictated by the graph γ:

$$\mathsf{Tr}_{\mathcal{V}_{\gamma}}[\varphi] = \int \prod_{i=1}^{n_{\gamma}} \mathrm{d}g_{a} \prod_{(a,i;b,j)} \mathcal{V}_{\gamma}(g_{a}^{(i)}, g_{b}^{(j)}) \prod_{i=1}^{n_{\gamma}} \varphi(g_{a}^{(i)}) \,.$$

$$Z[\varphi, \bar{\varphi}] = \sum_{\Gamma} w_{\Gamma}(\{\lambda_{\gamma}\})A_{\Gamma} = \text{ complete spinfoam model.}$$

- Γ = stranded diagrams dual to *d*-dimensional cellular complexes of arbitrary topology.
- Amplitudes A_{Γ} = sums over group theoretic data associated to the cellular complex.
- \blacktriangleright \mathcal{K} and \mathcal{V}_{γ} chosen to match the desired spinfoam model.

Oriti 1110.5606; Reisenberger, Rovelli 0002083; De Pietri, Petronio 0004045; Gurau 1006.0714; Baratin, Oriti 1002.4723; Finocchiaro, Oriti 1812.03550
Luca Marchetti Developments in GFT Cosmology 3

Action

The one-particle Hilbert space is $\mathcal{H}_{tetra} \subset \otimes_{a=1}^4 \mathcal{H}_{\Delta_a}$ (subset defined by the imposition of constraints)

Finocchiaro, Oriti 1812.03550; Baez, Barrett 9903060; Baratin, Oriti 1002.4723; Gielen, Oriti 1004.5371; Oriti 1310.7786.

The one-particle Hilbert space is $\mathcal{H}_{tetra} \subset \otimes_{a=1}^4 \mathcal{H}_{\Delta_a}$ (subset defined by the imposition of constraints)

```
Lie algebra (metric)
```

$$\mathcal{H}_{\Delta_a} = L^2(\mathfrak{g})$$

Constraints

Geometricity constraints (appropriately encoded in \mathcal{K} and \mathcal{V}_{γ}) allow for a d-1-simplicial interpretation of the fundamental quanta:

Closure

Simplicity

 $\sum_{a} B_{a} = 0$ (faces of the tetrahedron close).

• $X \cdot (B - \gamma \star B)_a = 0$ (EPRL);

Finocchiaro, Oriti 1812.03550; Baez, Barrett 9903060; Baratin, Oriti 1002.4723; Gielen, Oriti 1004.5371; Oriti 1310.7786.

The one-particle Hilbert space is $\mathcal{H}_{tetra} \subset \otimes_{a=1}^4 \mathcal{H}_{\Delta_a}$ (subset defined by the imposition of constraints)

```
Lie algebra (metric)
```

$$\mathcal{H}_{\Delta_a} = L^2(\mathfrak{g})$$

Constraints

The one-particle Hilbert space is $\mathcal{H}_{tetra} \subset \otimes_{a=1}^4 \mathcal{H}_{\Delta_a}$ (subset defined by the imposition of constraints)

Lie algebra (metric) $\mathcal{H}_{\Delta_a} = L^2(\mathfrak{g}) \xleftarrow{\text{Non-comm.}}{\text{FT}} \qquad \mathcal{H}_{\Delta_a} = L^2(G)$ Constraints

ClosureSimplicityTHIS TALK $\sum_a B_a = 0$ $\blacktriangleright X \cdot (B - \gamma \star B)_a = 0$ (EPRL); $K \cdot B_a = 0$ (faces of the tetrahedron close). $\blacktriangleright X \cdot B_a = 0$ (BC).

Finocchiaro, Oriti 1812.03550; Baez, Barrett 9903060; Baratin, Oriti 1002.4723; Gielen, Oriti 1004.5371; Oriti 1310.7786.

The one-particle Hilbert space is $\mathcal{H}_{tetra} \subset \otimes_{a=1}^4 \mathcal{H}_{\Delta_a}$ (subset defined by the imposition of constraints)

d-1-simplicial interpretation of the fundamental quanta:

Closure

Simplicity THIS TALK $\blacktriangleright X \cdot (B - \gamma \star B)_a = 0$ (EPRL);

 $\sum_{a} B_{a} = 0$ (faces of the tetrahedron close).

$$\bullet \quad X \cdot B_a = 0 \text{ (BC)}.$$

Finocchiaro, Oriti 1812.03550; Baez, Barrett 9903060; Baratin, Oriti 1002.4723; Gielen, Oriti 1004.5371; Oriti 1310.7786.

The one-particle Hilbert space is $\mathcal{H}_{tetra} \subset \otimes_{a=1}^4 \mathcal{H}_{\Delta_a}$ (subset defined by the imposition of constraints)

Geometricity constraints (appropriately encoded in K and V_{γ}) allow for a d-1-simplicial interpretation of the fundamental quanta:

ClosureSimplicity j_a $\sum_a B_a = 0$ $\blacktriangleright X \cdot (B - \gamma \star B)_a = 0$ (EPRL);(faces of the tetrahedron close). $\blacktriangleright X \cdot B_a = 0$ (BC).

- ▶ Impose simplicity and reduce to *G* = SU(2).
- Impose closure (gauge invariance).

Finocchiaro, Oriti 1812.03550; Baez, Barrett 9903060; Baratin, Oriti 1002.4723; Gielen, Oriti 1004.5371; Oriti 1310.7786.

LQG

The one-particle Hilbert space is $\mathcal{H}_{tetra} \subset \otimes_{a=1}^4 \mathcal{H}_{\Delta_a}$ (subset defined by the imposition of constraints)

Geometricity constraints (appropriately encoded in \mathcal{K} and \mathcal{V}_{γ}) allow for a d-1-simplicial interpretation of the fundamental quanta:

Closure $\sum_{a} B_a = 0$

(faces of the tetrahedron close). $\blacktriangleright X \cdot B_a = 0$ (BC).

Simplicity THIS TALK $\blacktriangleright X \cdot (B - \gamma \star B)_a = 0$ (EPRL);

- Impose simplicity and reduce to G = SU(2).
 - Impose closure (gauge invariance).

$$\begin{aligned} \mathcal{H}_{\mathsf{tetra}} &= \bigoplus_{\vec{j}} \mathsf{Inv} \left[\bigotimes_{a=1}^{4} \mathcal{H}_{j_a} \right] \\ &= \mathsf{open \ spin-network \ vertex \ space} \end{aligned}$$

Finocchiaro, Oriti 1812.03550: Baez, Barrett 9903060: Baratin, Oriti 1002.4723: Gielen, Oriti 1004.5371: Oriti 1310.7786.

Developments in GFT Cosmology

LQG

Tetrahedron wavefunction

 $\varphi(g_1,\ldots,g_4)$ (subject to constraints)

Oriti 1310.7786; Oriti 1408.7112; Sahlman, Sherif 2302.03612.

Oriti 1310.7786; Oriti 1408.7112; Sahlman, Sherif 2302.03612.

$$\mathcal{F}_{\mathsf{GFT}} = \bigoplus_{V=0}^{\infty} \operatorname{sym} \left[\mathcal{H}_{\mathsf{tetra}}^{(1)} \otimes \mathcal{H}_{\mathsf{tetra}}^{(2)} \otimes \ldots \mathcal{H}_{\mathsf{tetra}}^{(V)} \right]$$

- ▶ \mathcal{F}_{GFT} generated by action of $\hat{\varphi}^{\dagger}(g_a)$ on $|0\rangle$, with $[\hat{\varphi}(g_a), \hat{\varphi}^{\dagger}(g'_a)] = \mathbb{I}_G(g_a, g'_a)$.
- $\mathcal{H}_{\Gamma} \subset \mathcal{F}_{GFT}$, \mathcal{H}_{Γ} space of states associated to connected simplicial complexes Γ .
- Generic states do not correspond to connected simplicial lattices nor classical simplicial geometries.
- ▶ Similar to *H*_{LQG} but also different: no continuum intuition, orthogonality wrt nodes, not graphs.

Oriti 1310.7786; Oriti 1408.7112; Sahlman, Sherif 2302.03612.

$$\mathcal{F}_{\mathsf{GFT}} = \bigoplus_{V=0}^{\infty} \operatorname{sym} \left[\mathcal{H}_{\mathsf{tetra}}^{(1)} \otimes \mathcal{H}_{\mathsf{tetra}}^{(2)} \otimes \ldots \mathcal{H}_{\mathsf{tetra}}^{(V)} \right]$$

- ▶ \mathcal{F}_{GFT} generated by action of $\hat{\varphi}^{\dagger}(g_a)$ on $|0\rangle$, with $[\hat{\varphi}(g_a), \hat{\varphi}^{\dagger}(g'_a)] = \mathbb{I}_G(g_a, g'_a)$.
- $\mathcal{H}_{\Gamma} \subset \mathcal{F}_{GFT}$, \mathcal{H}_{Γ} space of states associated to connected simplicial complexes Γ .
- Generic states do not correspond to connected simplicial lattices nor classical simplicial geometries.
- ▶ Similar to *H*_{LQG} but also different: no continuum intuition, orthogonality wrt nodes, not graphs.

Volume operator
$$\hat{V} = \int dg_a^{(1)} dg_a^{(2)} V(g_a^{(1)}, g_a^{(2)}) \hat{\varphi}^{\dagger}(g_a^{(1)}) \hat{\varphi}(g_a^{(2)}) = \sum_{j_a, m_a, \iota} V_{j_a, \iota} \hat{\varphi}^{\dagger}_{j_a, m_a, \iota} \hat{\varphi}_{j_a, m_a, \iota}$$

Generic second quantization prescription to build a m + n-body operator: sandwich matrix elements between spin-network states between m powers of φ² and n powers of φ².

Oriti 1310.7786; Oriti 1408.7112; Sahlman, Sherif 2302.03612.

Luca Marchetti

Operators

Group Field Theories: theories of a field $\varphi: G^d \to \mathbb{C}$ defined on the product G^d .

 $\begin{aligned} d \text{ is the dimension of the "spacetime to be"} & (d=4) \\ & \text{and } G \text{ is the local gauge group of gravity,} \\ & G=\mathrm{SL}(2,\mathbb{C}) \text{ or, in some cases, } G=\mathrm{SU}(2). \end{aligned}$

Kinematics

Quanta are d-1-simplices decorated with quantum geometric and scalar data:

Geometricity constraints imposed analogously as before.

Dynamics

 S_{GFT} obtained by comparing Z_{GFT} with simplicial gravity + scalar fields path integral.

 Geometric data enter the action in a non-local and combinatorial fashion.

Li, Oriti, Zhang 1701.08719; Oriti 0912.2441; Gielen, Oriti 1311.1238; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Sindoni 1602.08104; ...

Group Field Theories: theories of a field φ : $G^d \times \mathbb{R}^{d_1} \to \mathbb{C}$ defined on the product of G^d and \mathbb{R}^{d_1} . d is the dimension of the "spacetime to be" (d = 4)and G is the local gauge group of gravity, $G = SL(2, \mathbb{C})$ or, in some cases, G = SU(2).

Kinematics

Quanta are d - 1-simplices decorated with quantum geometric and scalar data:

- Geometricity constraints imposed analogously as before.
- Scalar field discretized on each *d*-simplex: each *d* − 1-simplex composing it carries values *X* ∈ ℝ^d₁.

Dynamics

 S_{GFT} obtained by comparing Z_{GFT} with simplicial gravity + scalar fields path integral.

- Geometric data enter the action in a non-local and combinatorial fashion.
- ▶ Scalar field data are local in interactions.
- ► For minimally coupled, free, massless scalars:

 $\mathcal{K}(g_a, g_b; \chi^{\alpha}, \chi^{\alpha'}) = \mathcal{K}(g_a, g_b; (\chi^{\alpha} - \chi^{\alpha'})^2)$ $\mathcal{V}_5(g_a^{(1)}, \dots, g_a^{(5)}, \chi) = \mathcal{V}_5(g_a^{(1)}, \dots, g_a^{(5)})$

Li, Oriti, Zhang 1701.08719; Oriti 0912.2441; Gielen, Oriti 1311.1238; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Sindoni 1602.08104; ...

Relational strategy and the GFT Fock space

LM, Oriti 2008.02774; Kotecha, Oriti 1801.09964.

Quantum

- ▶ $\mathcal{F}_{red} = \bigoplus_{N} sym \mathcal{H}_{N}$, generated by $(\varphi^{\dagger}, |0\rangle)$.
- But φ , φ^{\dagger} satisfy equal-time (t_F) CCR!

LM, Oriti 2008.02774; Kotecha, Oriti 1801.09964

access to diffeos?

Simplest ansatz: localize operators wrt. clock data.

$$\hat{N} = \int \mathrm{d}g_{\mathfrak{s}} \,\mathrm{d}\chi \,\hat{\varphi}^{\dagger}(g_{\mathfrak{s}},\chi)\hat{\varphi}(g_{\mathfrak{s}},\chi) \,, \\ \hat{N}(\chi) = \int \mathrm{d}g_{\mathfrak{s}} \,\hat{\varphi}^{\dagger}(g_{\mathfrak{s}},\chi)\hat{\varphi}(g_{\mathfrak{s}},\chi) \,.$$

Quantum

- $\mathcal{F}_{red} = \bigoplus_{N} sym \mathcal{H}_{N}$, generated by $(\varphi^{\dagger}, |0\rangle)$.
- But φ , φ^{\dagger} satisfy equal-time (t_F) CCR!

What is t_F ? (Certainly, $t_F \neq t_N$!)

LM, Oriti 2008.02774; Kotecha, Oriti 1801.09964

Quantum

- ► $\mathcal{F}_{red} = \bigoplus_{N} sym \mathcal{H}_{N}$, generated by $(\varphi^{\dagger}, |0\rangle)$.
- But φ, φ[†] satisfy equal-time (t_F) CCR!

What is t_F ? (Certainly, $t_F \neq t_N$!)

Open questions

A scalar field should be represented as an operator on $\mathcal{F}_{\text{GFT}}.$

- $\chi =$ eigenvalue on "synchronous" states.
- What about "non-synchronous" states?
- Extension to generic observables?

LM, Oriti 2008.02774; Kotecha, Oriti 1801.09964

 $\hat{N}(\chi) = \int \mathrm{d}g_a \, \hat{\varphi}^{\dagger}(g_a, \chi) \hat{\varphi}(g_a, \chi) \, .$

Luca Marchetti

Quantum

- ► $\mathcal{F}_{red} = \bigoplus_{N} sym \mathcal{H}_{N}$, generated by $(\varphi^{\dagger}, |0\rangle)$.
- But φ, φ[†] satisfy equal-time (t_F) CCR!

What is t_F ? (Certainly, $t_F \neq t_N$!)

Open questions

A scalar field should be represented as an operator on $\mathcal{F}_{\text{GFT}}.$

- $\chi =$ eigenvalue on "synchronous" states.
- What about "non-synchronous" states?
- Extension to generic observables?

What is relational time in \mathcal{F}_{GFT} ?

LM, Oriti 2008.02774; Kotecha, Oriti 1801.09964

Luca Marchetti
Relational strategy in GFT: difficulties

The pre-geometric, many-body nature of GFTs hinders the implementation of the relational strategy!

Classical

- *N* classical GFT atoms: $C^{(i)} = G^d \times \mathbb{R}^{d_l}$.
- *i*th-atom deparametrizable wrt. a clock $\chi^{0,(i)}$.
- Synchronize the clocks $\chi^{0,(i)} \longrightarrow t_N$.
- Deparametrized *N*-atoms system: $C_N = \mathbb{R} \times \Gamma_N$.

Relational observables?

How to construct them without having manifest access to diffeos?

Simplest ansatz: localize operators wrt. clock data.

$$\hat{N} = \int \mathrm{d}g_{\mathfrak{a}} \,\mathrm{d}\chi \,\hat{\varphi}^{\dagger}(g_{\mathfrak{a}},\chi)\hat{\varphi}(g_{\mathfrak{a}},\chi) ,$$

$$\hat{N}(\chi) = \int \mathrm{d}g_{\mathfrak{a}} \,\hat{\varphi}^{\dagger}(g_{\mathfrak{a}},\chi)\hat{\varphi}(g_{\mathfrak{a}},\chi) .$$

Quantum

- ▶ $\mathcal{F}_{red} = \bigoplus_{N} \operatorname{sym} \mathcal{H}_{N}$, generated by $(\varphi^{\dagger}, |0\rangle)$.
- But φ, φ[†] satisfy equal-time (t_F) CCR!

What is t_F ? (Certainly, $t_F \neq t_N$!)

Open questions

A scalar field should be represented as an operator on $\mathcal{F}_{\text{GFT}}.$

- $\chi =$ eigenvalue on "synchronous" states.
- What about "non-synchronous" states?
- Extension to generic observables?

What is relational time in \mathcal{F}_{GFT} ?

LM, Oriti 2008.02774; Kotecha, Oriti 1801.09964

Luca Marchetti

Ante quantum

Effective approaches

Emergent effective relational strategy

PROTO-GEOMETRIC

 Emergence Relational strategy in terms of collective observables and states.
 Effectiveness Averaged relational localization.

Internal frame not too quantum.

LM, Oriti 2008.02774; Bojowald, Hoehn, Tsobanjan 1011.3040; Bojowald, Tsobanjan 0906.1772;

Emergent effective relational strategy

PROTO-GEOMETRIC POST QUANTUM ANTE QUANTUM PRE-GEOMETRIC **Basic principles** Emergence Relational strategy in terms of collective observables and states.

Effectiveness Averaged relational localization. Internal frame not too quantum. Concrete example: scalar field clock

Emergence

- Identify (collective) states |Ψ⟩ admitting a continuum proto-geometric interpretation.
- Identify a set of collective observables:

LM, Oriti 2008.02774; Bojowald, Hoehn, Tsobanjan 1011.3040; Bojowald, Tsobanjan 0906.1772;

Emergent effective relational strategy

PROTO-GEOMETRIC POST QUANTUM ANTE QUANTUM PRE-GEOMETRIC Basic principles Emergence Relational strategy in terms of collective observables and states. Effectiveness Averaged relational localization. Internal frame not too quantum.

Concrete example: scalar field clock

Emergence

- Identify (collective) states |Ψ⟩ admitting a continuum proto-geometric interpretation.
- Identify a set of collective observables:

Effectivness

It exists a "Hamiltonian" Â such that

$$i \frac{\mathrm{d}}{\mathrm{d} \langle \hat{\chi} \rangle_{\Psi}} \langle \hat{O}_{a} \rangle_{\Psi} = \langle [\hat{H}, \hat{O}_{a}] \rangle_{\Psi} ,$$

and whose moments coincide with those of $\hat{\Pi}.$

 $\begin{array}{ll} \blacktriangleright \mbox{ Relative fluctuations of } \hat{\chi} \mbox{ on } |\Psi\rangle \mbox{ should be } \ll 1 \mbox{:} \\ \Delta^2 \chi \ll 1 \mbox{,} \qquad \Delta^2 \chi \sim \langle \hat{\mathcal{N}} \rangle_{\Psi}^{-1} \mbox{ .} \end{array}$

LM, Oriti 2008.02774; Bojowald, Hoehn, Tsobanjan 1011.3040; Bojowald, Tsobanjan 0906.1772;

Luca Marchetti

Coherent Peaked States

Collective states

GFT condensates

From the GFT perspective, continuum geometries are associated to large number of quanta.

The simplest states that can accommodate infinite number of quanta are condensate states:

$$|\sigma\rangle = \mathcal{N}_{\sigma} \exp\left[\int \mathrm{d}^{d_{l}} \chi \int \mathrm{d}g_{\mathfrak{s}} \,\sigma(g_{\mathfrak{s}},\chi^{\alpha}) \hat{\varphi}^{\dagger}(g_{\mathfrak{s}},\chi^{\alpha})\right] |0\rangle \,.$$

LM, Oriti 2008.02774; LM, Oriti 2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Oriti, Sindoni 1311.1238; Gielen 1404.2944

Collective states

GFT condensates

From the GFT perspective, continuum geometries are associated to large number of quanta.

The simplest states that can accommodate infinite number of quanta are condensate states:

$$|\sigma\rangle = \mathcal{N}_{\sigma} \exp\left[\int \mathrm{d}^{d_{l}} \chi \int \mathrm{d}g_{\mathfrak{s}} \, \sigma(g_{\mathfrak{s}}, \chi^{\alpha}) \hat{\varphi}^{\dagger}(g_{\mathfrak{s}}, \chi^{\alpha})\right] |0\rangle \,.$$

Mean-field approximation

• When interactions are small (certainly satisfied in an appropriate regime) the dynamics of σ is:

$$\left\langle \frac{\delta S[\hat{\varphi}, \hat{\varphi}^{\dagger}]}{\delta \hat{\varphi}(g_{I}, x^{\alpha})} \right\rangle_{\sigma} = \int \mathrm{d}h_{a} \int \mathrm{d}\chi \, \mathcal{K}(g_{a}, h_{a}, (x^{\alpha} - \chi^{\alpha})^{2}) \sigma(h_{a}, \chi^{\alpha}) + \lambda \frac{\delta V[\varphi, \varphi^{*}]}{\delta \varphi^{*}(g_{a}, x^{\alpha})} \bigg|_{\varphi = \sigma} = 0 \,.$$

▶ Non-perturbative: equivalent to a mean-field (saddle-point) approximation of Z.

LM, Oriti 2008.02774; LM, Oriti 2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Oriti, Sindoni 1311.1238; Gielen 1404.2944

Collective states

Relationality

GFT condensates

From the GFT perspective, continuum geometries are associated to large number of quanta.

The simplest states that can accommodate infinite number of quanta are condensate states:

$$|\sigma\rangle = \mathcal{N}_{\sigma} \exp\left[\int \mathrm{d}^{d_l} \chi \int \mathrm{d}g_{\mathfrak{s}} \, \sigma(g_{\mathfrak{s}}, \chi^{\alpha}) \hat{\varphi}^{\dagger}(g_{\mathfrak{s}}, \chi^{\alpha})\right] |0\rangle \,.$$

Mean-field approximation

• When interactions are small (certainly satisfied in an appropriate regime) the dynamics of σ is:

$$\left\langle \frac{\delta S[\hat{\varphi}, \hat{\varphi}^{\dagger}]}{\delta \hat{\varphi}(g_{I}, x^{\alpha})} \right\rangle_{\sigma} = \int \mathrm{d}h_{a} \int \mathrm{d}\chi \, \mathcal{K}(g_{a}, h_{a}, (x^{\alpha} - \chi^{\alpha})^{2}) \sigma(h_{a}, \chi^{\alpha}) + \lambda \frac{\delta V[\varphi, \varphi^{*}]}{\delta \varphi^{*}(g_{a}, x^{\alpha})} \bigg|_{\varphi = \sigma} = 0 \,.$$

▶ Non-perturbative: equivalent to a mean-field (saddle-point) approximation of Z.

Condensate Peaked States

Constructing relational observables on *F*_{GFT} is difficult (QFT with no continuum intuition).

LM, Oriti 2008.02774; LM, Oriti 2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Oriti, Sindoni 1311.1238; Gielen 1404.2944.

Collective states

Relationality

GFT condensates

From the GFT perspective, continuum geometries are associated to large number of quanta.

The simplest states that can accommodate infinite number of quanta are condensate states:

$$|\sigma
angle = \mathcal{N}_{\sigma} \exp\left[\int \mathrm{d}^{d_l}\chi \int \mathrm{d}g_{\mathfrak{s}} \,\sigma(g_{\mathfrak{s}},\chi^{lpha})\hat{\varphi}^{\dagger}(g_{\mathfrak{s}},\chi^{lpha})
ight]|0
angle \,.$$

Mean-field approximation

• When interactions are small (certainly satisfied in an appropriate regime) the dynamics of σ is:

$$\left\langle \frac{\delta S[\hat{\varphi}, \hat{\varphi}^{\dagger}]}{\delta \hat{\varphi}(g_{I}, x^{\alpha})} \right\rangle_{\sigma} = \int \mathrm{d}h_{a} \int \mathrm{d}\chi \, \mathcal{K}(g_{a}, h_{a}, (x^{\alpha} - \chi^{\alpha})^{2}) \sigma(h_{a}, \chi^{\alpha}) + \lambda \frac{\delta V[\varphi, \varphi^{*}]}{\delta \varphi^{*}(g_{a}, x^{\alpha})} \bigg|_{\varphi = \sigma} = 0 \,.$$

▶ Non-perturbative: equivalent to a mean-field (saddle-point) approximation of Z.

Condensate Peaked States

• Constructing relational observables on \mathcal{F}_{GFT} is difficult (QFT with no continuum intuition).

- Relational localization implemented at an effective level on observable averages.
- If χ^{μ} constitute a reference frame, this can be achieved by assuming

 $\sigma = (\text{fixed peaking function } \eta) \times (\text{dynamically determined reduced wavefunction } \tilde{\sigma})$

LM, Oriti 2008.02774; LM, Oriti 2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Oriti, Sindoni 1311.1238; Gielen 1404.2944.

Spatial relational homogeneity: σ depends on a MCMF "clock" scalar field $\chi^{\rm 0}$

LM, Oriti 2008.02774 ; LM, Oriti 2010.09700.

Luca Marchetti

Spatial relational homogeneity:

 σ depends on a MCMF "clock" scalar field $\chi^{\rm 0}$

Observables

Number, volume (determined e.g. by the mapping with LQG) and matter operators (notation: $(\cdot, \cdot) = \int d\chi^0 dg_a$):

$\hat{\pmb{X}}^{m{0}}=\left(\hat{\pmb{arphi}}^{\dagger},\chi^{m{0}}\hat{\pmb{arphi}} ight)$	$\hat{m{V}}=(\hat{arphi}^{\dagger},m{V}[\hat{arphi}])$
$\hat{\pmb{\Pi}}^{0} = -i(\hat{\varphi}^{\dagger},\partial_0\hat{arphi})$	$\hat{\pmb{N}}=(\hat{arphi}^{\dagger},\hat{arphi})$

LM, Oriti 2008.02774 ; LM, Oriti 2010.09700.

Spatial relational homogeneity: σ depends on a MCMF "clock" scalar field χ^0

Observables

Number, volume (determined e.g. by the mapping with LQG) and matter operators (notation: $(\cdot, \cdot) = \int dx^0 dg_a$): $\hat{\chi}^0 = (\hat{\varphi}^{\dagger}, \chi^0 \hat{\varphi})$ $\hat{V} = (\hat{\varphi}^{\dagger}, V[\hat{\varphi}])$ upportunction $V \equiv \langle \hat{V} \rangle_{\sigma,i} = \sum V_i |\tilde{\sigma}_i|^2 (x^0)$

$$\hat{\Pi}^{0} = -i(\hat{\varphi}^{\dagger}, \partial_{0}\hat{\varphi}) \qquad \hat{N} = (\hat{\varphi}^{\dagger}, \hat{\varphi}) \qquad \stackrel{\text{instrances}}{\text{isotropy}} N \equiv \langle \hat{N} \rangle_{\sigma_{X^{0}}} = \sum_{i} |\tilde{\sigma}_{i}|^{2} (x^{0})$$

LM, Oriti 2008.02774 ; LM, Oriti 2010.09700.

Spatial relational homogeneity: σ depends on a MCMF "clock" scalar field χ^0

Relationality

er, volume (determined e and matter operators (not	e.g. by the mapping tation: $(\cdot, \cdot) = \int d\chi^0 dg$	g with 〈 ᠭa):	$egin{array}{l} \langle \hat{O} angle_{\sigma_{\chi^0}} = O[ilde{\sigma}] _{\chi^0 = x^0} \colon { m functionals} \; { m of} \; \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$\hat{\pmb{X}}^{0}=\left(\hat{arphi}^{\dagger},\chi^{0}\hat{arphi} ight)$	$\hat{\pmb{V}}=(\hat{arphi}^{\dagger},\pmb{V}[\hat{arphi}])$	wavefunction	$V \equiv \langle \hat{V} \rangle_{\sigma_{\chi^0}} = \sum_j V_j \tilde{\sigma}_j ^2 (x^0)$
$\hat{\Pi}^{0}=-i(\hat{arphi}^{\dagger},\partial_{0}\hat{arphi})$	$\hat{\pmb{N}}=(\hat{arphi}^{\dagger},\hat{arphi})$	isotropy	$N\equiv \langle \hat{N} angle_{\sigma_{X^0}}=\sum_j ilde{\sigma}_j ^2(x^0)$

Clock expectation values

Number, volume (determined e.g. by the mapping with

LQG) and matter operators (notation: $(\cdot, \cdot) = \int d\chi^0 dg_a$):

For large N, x^0 has a clear physical meaning:

$$\begin{split} \langle \hat{\chi}^{0} \rangle_{\sigma_{\chi^{0}}} &\equiv \langle X^{0} \rangle_{\sigma_{\chi^{0}}} / N \qquad (intensive) \\ &= x^{0} \left(1 + \delta X(x^{0}) / N(x^{0}) \right) \\ \langle \hat{\Pi}^{0} \rangle_{\sigma_{\chi^{0}}} &= \langle \hat{H}_{\sigma} \rangle_{\sigma_{\chi^{0}}} \left(1 + \text{const.} / N(x^{0}) \right) \end{split}$$

Clock variances

For large N, clock fluctuations scale as N^{-1} : $\Delta_{\sigma_{X^0}}^2 \chi^0 < \frac{1}{N} \left(1 + \frac{\epsilon}{2(x^0)^2} \frac{1}{(1 + \delta X/N)^2} \right)$ $\Delta_{\sigma_{v^0}}^2 \Pi^0 = \Delta_{\sigma_{v^0}}^2 H_\sigma \left(1 + \text{const.} / N(x^0) \right)$ $\Delta_{\sigma}^2 H_{\sigma} = \Delta_{\sigma}^2 N = N^{-1}(x^0).$

LM. Oriti 2008.02774 : LM. Oriti 2010.09700.

Luca Marchetti

Mean-field approximation

- ▶ Mesoscopic regime: large *N* but negligible interactions.
- Derivative expansion of K (due to peaking properties).
- Isotropy: $\tilde{\sigma}_j \equiv \rho_j e^{i\theta_j}$ fundamental variables.

 $\tilde{\sigma}_i^{\prime\prime} - 2i\tilde{\pi}_0\tilde{\sigma}_i^\prime - E_i^2\tilde{\sigma} = 0.$

Mean-field approximation

- ▶ Mesoscopic regime: large *N* but negligible interactions.
- Derivative expansion of \mathcal{K} (due to peaking properties).
- Isotropy: $\tilde{\sigma}_j \equiv \rho_j e^{i\theta_j}$ fundamental variables.

$${\check{\sigma}}_{j}^{\prime\prime}-2i{\tilde{\pi}}_{0}{\check{\sigma}}_{j}^{\prime}-E_{j}^{2}{\check{\sigma}}=0.$$

i

$$\left(\frac{V'}{3V}\right)^{2} \simeq \left(\frac{2\sum_{j}V_{j}\rho_{j}\operatorname{sgn}(\rho_{j}')\sqrt{\varepsilon_{j}-Q_{j}^{2}/\rho_{j}^{2}+\mu_{j}^{2}\rho_{j}^{2}}}{3\sum_{j}V_{j}\rho_{j}^{2}}\right)^{2}, \quad \frac{V''}{V} \simeq \frac{2\sum_{j}V_{j}\left[\varepsilon_{j}+2\mu_{j}^{2}\rho_{j}^{2}\right]}{\sum_{j}V_{j}\rho_{j}^{2}}$$

LM, Oriti 2008.02774; LM, Oriti 2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881.

Mean-field approximation

- Mesoscopic regime: large N but negligible interactions.
- Derivative expansion of K (due to peaking properties).
- Isotropy: $\tilde{\sigma}_j \equiv \rho_j e^{i\theta_j}$ fundamental variables.

$$\tilde{\sigma}_{j}^{\prime\prime}-2i\tilde{\pi}_{0}\tilde{\sigma}_{j}^{\prime}-E_{j}^{2}\tilde{\sigma}=0.$$

i

$$\left(\frac{V'}{3V}\right)^2 \simeq \left(\frac{2\sum_j V_j \rho_j \operatorname{sgn}(\rho_j') \sqrt{\mathcal{E}_j - \mathcal{Q}_j^2 / \rho_j^2 + \mu_j^2 \rho_j^2}}{3\sum_j V_j \rho_j^2}\right)^2, \quad \frac{V''}{V} \simeq \frac{2\sum_j V_j \left[\mathcal{E}_j + 2\mu_j^2 \rho_j^2\right]}{\sum_j V_j \rho_j^2}$$

Large number of quanta (large volume and late times)

- $\checkmark~$ Volume quantum fluctuations under control.
- If μ_j² is mildly dependent on j (or one j is dominating) and equal to 3πG

$$(V'/3V)^2 \simeq 4\pi G/3 \longrightarrow \text{flat FLRW}$$

LM, Oriti 2008.02774; LM, Oriti 2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881.

Classical limit

Mean-field approximation

- Mesoscopic regime: large N but negligible interactions.
- Derivative expansion of K (due to peaking properties).
- Isotropy: $\tilde{\sigma}_j \equiv \rho_j e^{i\theta_j}$ fundamental variables.

$${\check{\sigma}}_{j}^{\prime\prime}-2i{\tilde{\pi}}_{0}{\check{\sigma}}_{j}^{\prime}-E_{j}^{2}{\check{\sigma}}=0.$$

$$\left(\frac{V'}{3V}\right)^{2} \simeq \left(\frac{2\sum_{j}V_{j}\rho_{j}\mathsf{sgn}(\rho_{j}')\sqrt{\mathcal{E}_{j}-\mathcal{Q}_{j}^{2}/\rho_{j}^{2}+\mu_{j}^{2}\rho_{j}^{2}}}{3\sum_{j}V_{j}\rho_{j}^{2}}\right)^{2}, \quad \frac{V''}{V} \simeq \frac{2\sum_{j}V_{j}\left[\mathcal{E}_{j}+2\mu_{j}^{2}\rho_{j}^{2}\right]}{\sum_{j}V_{j}\rho_{j}^{2}}$$

Large number of quanta (large volume and late times)

- ✓ Volume quantum fluctuations under control.
- If μ_j² is mildly dependent on j (or one j is dominating) and equal to 3πG

 $(V'/3V)^2 \simeq 4\pi G/3 \longrightarrow \text{flat FLRW}$

 $\begin{array}{l} \checkmark \quad x^{0} = \langle \hat{\chi}^{0} \rangle_{\sigma_{\chi^{0}}}. \\ \checkmark \quad \text{Clock quantum fluctuations negligible.} \\ \checkmark \quad \langle \hat{\Pi}^{0} \rangle_{\sigma_{-0}} = \langle \hat{H}_{\sigma} \rangle_{\sigma_{-0}} \text{ (higher moments } \simeq 0). \end{array}$

Effective relational framework reliable!

LM, Oriti 2008.02774; LM, Oriti 2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881.

Luca Marchetti

Classical limit

State-agnostic approach

How does our scheme for extraction of relational cosmological physics depend on the specific choice of states?

Effective state-agnostic approach for constrained quantum systems

Effective state-agnostic approach for constrained quantum systems

Construction of the effective system

How does our scheme for extraction of relational cosmological physics depend on the specific choice of states?

Effective state-agnostic approach for constrained quantum systems

Construction of the effective system

Step 1: definition of the quantum phase space

- Describe the system with exp. values $\langle \hat{A}_i \rangle$ and moments:
- Poisson structure inherited from the algebra structure

$$\left\{ \langle \hat{A}_i \rangle \,, \langle \hat{A}_j \rangle \right\} = (i\hbar)^{-1} \left\langle [\hat{A}_i, \hat{A}_j] \right\rangle \,$$
 (same for Δ s).

How does our scheme for extraction of relational cosmological physics depend on the specific choice of states? A "state-agnostic" strategy is needed!

Effective state-agnostic approach for constrained quantum systems

Construction of the effective system

Step 1: definition of the quantum phase space

- Describe the system with exp. values $\langle \hat{A}_i \rangle$ and moments:
- Poisson structure inherited from the algebra structure

$$\left\{ \langle \hat{A}_i \rangle \,, \langle \hat{A}_j \rangle \right\} = (i\hbar)^{-1} \left\langle [\hat{A}_i, \hat{A}_j] \right\rangle \,$$
 (same for Δ s).

Step 2: definition of the constraints

- $\langle \hat{C} \rangle = 0$ and $\langle (\widehat{pol} \langle \widehat{pol} \rangle) \hat{C} \rangle = 0$ eff. constraints;
- Generate gauge transf. on the quantum phase space.

How does our scheme for extraction of relational cosmological physics depend on the specific choice of states?

Effective state-agnostic approach for constrained quantum systems

Construction of the effective system

Step 1: definition of the quantum phase space

- Describe the system with exp. values $\langle \hat{A}_i \rangle$ and moments:
- Poisson structure inherited from the algebra structure

$$\left\{ \langle \hat{A}_i \rangle \,, \langle \hat{A}_j \rangle \right\} = (i\hbar)^{-1} \left\langle [\hat{A}_i, \hat{A}_j] \right\rangle \,$$
 (same for Δ s).

Step 2: definition of the constraints

- $\langle \hat{C} \rangle = 0$ and $\langle (\widehat{pol} \langle \widehat{pol} \rangle) \hat{C} \rangle = 0$ eff. constraints;
- Generate gauge transf. on the quantum phase space.
- Step 3: truncation scheme (e.g. semiclassicality)

LM, Gielen, Oriti, Polaczek 2110.11176; Bojowald, Sandhoefer, Skirzewski, Tsobanjan 0804.3365; Bojowald Tsobanjan 0906.1772.

How does our scheme for extraction of relational cosmological physics depend on the specific choice of states?

Effective state-agnostic approach for constrained quantum systems

Construction of the effective system

Step 1: definition of the quantum phase space

- Describe the system with exp. values $\langle \hat{A}_i \rangle$ and moments:
- Poisson structure inherited from the algebra structure

$$\left\{ \langle \hat{A}_i \rangle \,, \langle \hat{A}_j \rangle \right\} = (i\hbar)^{-1} \left\langle [\hat{A}_i, \hat{A}_j] \right\rangle \,$$
 (same for Δs).

Step 2: definition of the constraints

- $\langle \hat{C} \rangle = 0$ and $\langle (\widehat{pol} \langle \widehat{pol} \rangle) \hat{C} \rangle = 0$ eff. constraints;
- Generate gauge transf. on the quantum phase space.
- Step 3: truncation scheme (e.g. semiclassicality)

LM, Gielen, Oriti, Polaczek 2110.11176; Bojowald, Sandhoefer, Skirzewski, Tsobanjan 0804.3365; Bojowald Tsobanjan 0906.1772.

Developments in GFT Cosmology

Relational description

How does our scheme for extraction of relational cosmological physics depend on the specific choice of states?

Effective state-agnostic approach for constrained quantum systems

Construction of the effective system

Step 1: definition of the quantum phase space

- Describe the system with exp. values $\langle \hat{A}_i \rangle$ and moments:
- Poisson structure inherited from the algebra structure

$$\left\{ \langle \hat{A}_i \rangle \,, \langle \hat{A}_j \rangle \right\} = (i\hbar)^{-1} \left\langle [\hat{A}_i, \hat{A}_j] \right\rangle \,$$
 (same for Δ s).

Step 2: definition of the constraints

- $\langle \hat{C} \rangle = 0$ and $\langle (\widehat{pol} \langle \widehat{pol} \rangle) \hat{C} \rangle = 0$ eff. constraints;
- Generate gauge transf. on the quantum phase space.

Step 3: truncation scheme (e.g. semiclassicality)

LM, Gielen, Oriti, Polaczek 2110.11176; Bojowald, Sandhoefer, Skirzewski, Tsobanjan 0804.3365; Bojowald Tsobanjan 0906.1772.

Developments in GFT Cosmology

Relational description

Step 1: choose a clock \hat{T} ([\hat{T}, \hat{P}] closes)

A "state-agnostic" strategy is needed!

How does our scheme for extraction of relational cosmological physics depend on the specific choice of states?

A "state-agnostic" strategy is needed!

Effective state-agnostic approach for constrained quantum systems

Construction of the effective system

Step 1: definition of the quantum phase space

- Describe the system with exp. values \langle \hat{A}_i \rangle and moments:
- Poisson structure inherited from the algebra structure

$$\left\{ \left< \hat{A}_i \right>, \left< \hat{A}_j \right> \right\} = (i\hbar)^{-1} \left< [\hat{A}_i, \hat{A}_j] \right> \text{ (same for } \Delta s).$$

Step 2: definition of the constraints

- $\langle \hat{C} \rangle = 0$ and $\langle (\widehat{pol} \langle \widehat{pol} \rangle) \hat{C} \rangle = 0$ eff. constraints;
- Generate gauge transf. on the quantum phase space.
- Step 3: truncation scheme (e.g. semiclassicality)

Relational description

Step 1: choose a clock \hat{T} ([\hat{T}, \hat{P}] closes)

Step 2: gauge fixing

- At 1st order: $\Delta(TA_i) = 0, A_i \in \mathcal{A} \setminus \{\hat{P}\}.$
- Use constraints to eliminate \hat{P} -variables.

LM, Gielen, Oriti, Polaczek 2110.11176; Bojowald, Sandhoefer, Skirzewski, Tsobanjan 0804.3365; Bojowald Tsobanjan 0906.1772.

How does our scheme for extraction of relational cosmological physics depend on the specific choice of states?

A "state-agnostic" strategy is needed!

Effective state-agnostic approach for constrained quantum systems

Construction of the effective system

Step 1: definition of the quantum phase space

- Describe the system with exp. values $\langle \hat{A}_i \rangle$ and moments:
- Poisson structure inherited from the algebra structure

$$\left\{ \left< \hat{A}_i \right>, \left< \hat{A}_j \right> \right\} = (i\hbar)^{-1} \left< [\hat{A}_i, \hat{A}_j] \right> \text{ (same for } \Delta s).$$

Step 2: definition of the constraints

- $\langle \hat{C} \rangle = 0$ and $\langle (\widehat{pol} \langle \widehat{pol} \rangle) \hat{C} \rangle = 0$ eff. constraints;
- Generate gauge transf. on the quantum phase space.
 Step 3: truncation scheme (e.g. semiclassicality)

Relational description

Step 1: choose a clock \hat{T} ([\hat{T}, \hat{P}] closes)

Step 2: gauge fixing

- At 1st order: $\Delta(TA_i) = 0, A_i \in \mathcal{A} \setminus \{\hat{P}\}.$
- Use constraints to eliminate P-variables.

Step 3: relational rewriting

- Determine the remaining gauge flow which preserves the gauge conditions.
- Write evolution of the remaining variables wrt. T (classical clock).

LM, Gielen, Oriti, Polaczek 2110.11176; Bojowald, Sandhoefer, Skirzewski, Tsobanjan 0804.3365; Bojowald Tsobanjan 0906.1772.

Luca Marchetti

How can this framework be generalized to a **field theory context**? Infinitely many algebra generators. Infinitely many quantum constraints.

LM, Gielen, Oriti, Polaczek 2110.11176.

Luca Marchetti

How can this framework be generalized to a **field theory context**? Infinitely many algebra generators. Infinitely many quantum constraints.

Additional truncation scheme

Motivations

- Interest in a coarse grained system characterized by a small number of macroscopic (1-body) observables.
- Expected to be the case for cosmology.

Coarse-graining truncation

- When the e.o.m. are linear, consider an integrated 1-body quantum constraint.
- Algebra generated by minimal set of physically relevant operators (including constraint).

How can this framework be generalized to a **field theory context**? Infinitely many algebra generators.

Additional truncation scheme

Motivations

- Interest in a coarse grained system characterized by a small number of macroscopic (1-body) observables.
- Expected to be the case for cosmology.

Coarse-graining truncation

- When the e.o.m. are linear, consider an integrated 1-body quantum constraint.
- Algebra generated by minimal set of physically relevant operators (including constraint).

GFT with MCMF scalar field

- Free e.o.m.: $\mathcal{D}\varphi \equiv (m^2 + \hbar^2 \Delta_g + \lambda \hbar^2 \partial_{\chi}^2)\varphi = 0.$
- Quantum constr. $\hat{C} = \int \hat{\varphi}^{\dagger} \mathcal{D} \hat{\varphi} = m^2 \hat{N} \hat{\Lambda} \lambda \hat{\Pi}_2$. \hat{K} such
- Generators: \hat{X} , $\hat{\Pi}$, $\hat{\Pi}_2$, \hat{N} , $\hat{\Lambda}$ and \hat{K} .
- \hat{K} such that $[\hat{\Lambda}, \hat{K}] = i\hbar\alpha\hat{K}$.

Setting

How can this framework be generalized to a field theory context? Infinitely many algebra generators. Infinitely many quantum constraints.

Additional truncation scheme

Motivations

- Interest in a coarse grained system characterized by a small number of macroscopic (1-body) observables.
- Expected to be the case for cosmology. ►

GFT with MCMF scalar field

- Free e.o.m.: $\mathcal{D}\varphi \equiv (m^2 + \hbar^2 \Delta_g + \lambda \hbar^2 \partial_{\gamma}^2)\varphi = 0.$
- Quantum constr. $\hat{C} = \int \hat{\varphi}^{\dagger} \mathcal{D} \hat{\varphi} = m^2 \hat{N} \hat{\Lambda} \lambda \hat{\Pi}_2$.

Expectation values and variances

- The procedure can naturally be carried over by choosing as clock variable \hat{K} .
- Relational evolution of $\langle \hat{X} \rangle$ in agreement with classical cosmology.

• Generators: \hat{X} , $\hat{\Pi}$, $\hat{\Pi}_2$, \hat{N} , $\hat{\Lambda}$ and \hat{K} .

•
$$\hat{K}$$
 such that $[\hat{\Lambda}, \hat{K}] = i\hbar\alpha\hat{K}$

Coarse-graining truncation

Algebra generated by minimal set of physically

relevant operators (including constraint).

When the e.o.m. are linear, consider an

integrated 1-body quantum constraint.

- Fluctuations are decoupled from expect. values.
- If they are small at small $\langle \hat{K} \rangle$ they stay small even at large $\langle \hat{K} \rangle$ (probably associated to a constant $\langle \hat{N} \rangle$).

LM, Gielen, Oriti, Polaczek 2110.11176.

Luca Marchetti

Setting

Conclusions

- Definition of an effective framework to implement the relational strategy:
 - ✓ Achieved via "synchronized" collective states.
 - ✓ Naturally reliable in the classical limit.
 - Breaks down when quantum effects are large.
- Crucial role of the number operator identified.

- Definition of an effective framework to implement the relational strategy:
 - ✓ Achieved via truncated constraints.
 - ✓ Quantum effects small at low curvature.
 - Quantum effects also small at high curvature!
- ✓ Crucial role of the number operator identified.

LM, Oriti 2008.02774; LM, Oriti 2010.09700; 2110.11176.

Luca Marchetti

- Geometry peaking?
- More geometry/matter observables needed!
- Comparison with state-agnostic approach.

- reclinically highly hon-crivial.
- More observables, better truncations, ...
- More refined techniques needed?
- Comparison with peaked-states approach.

LM, Oriti 2008.02774; LM, Oriti 2010.09700; 2110.11176.

Luca Marchetti

- More geometry/matter observables needed!
- Comparison with state-agnostic approach.

- Comparison with peaked-states approach.
- ▲ Generalization of state-agnostic approach to QFTs (using covariant phase space and *n*Pl techniques)!

De Vuyst, Höhn, LM, Mele (in progress)

Luca Marchetti

Comparison with state-agnostic approach.

Comparison with peaked-states approach.

▲ Generalization of state-agnostic approach to QFTs (using covariant phase space and *n*PI techniques)!

What about relational observables in full GFT?

De Vuyst, Höhn, LM, Mele (in progress).

Luca Marchetti

GFTs: pre-geometric many-body

Luca Marchetti

Quantum Mechanics

Clock POVMs

There cannot exist a self-adjoint (monotonic) \hat{T} canonically conjugate to a bounded \hat{H}_{C} .

LM, Oriti, Wilson-Ewing (in progress).

Clock POVMs

There cannot exist a self-adjoint (monotonic) \hat{T} canonically conjugate to a bounded \hat{H}_{C} .

- A POVM $\hat{E}_T : \mathcal{B}(G) \to \mathcal{L}_B(\mathcal{H})$ satisfies
- Positivity: $\hat{E}_T(X) \ge 0 \ \forall X \in \mathcal{B}(G)$.
- Normalization: $\hat{E}_T(G) = \hat{\mathbb{I}}_{\mathcal{H}}$.
- σ -additivity: $\hat{E}_T(\cup_i X_i) = \sum_i \hat{E}_T(X_i)$.

Quantum Mechanics

Clock POVMs

There cannot exist a self-adjoint (monotonic) \hat{T} canonically conjugate to a bounded \hat{H}_{C} .

- Normalization: $\hat{E}_{\mathcal{T}}(G) = \hat{\mathbb{I}}_{\mathcal{H}}$.
- σ -additivity: $\hat{E}_T(\cup_i X_i) = \sum_i \hat{E}_T(X_i)$.

A POVM $\hat{E}_T : \mathcal{B}(G) \to \mathcal{L}_B(\mathcal{H})$ satisfies A time operator is a covariant POVM \hat{E}_T wrt. $\hat{\mathcal{H}}_C$:

- ▶ Positivity: $\hat{E}_T(X) \ge 0 \ \forall X \in \mathcal{B}(G)$. ▶ $\hat{E}_T(X+t) = \hat{U}_C(t)\hat{E}_X\hat{U}_C^{\dagger}(t)$, with $\hat{U}_C \equiv e^{-i\hat{H}_C t}$.
 - In the simplest case, $\hat{E}_T \propto dt |t\rangle \langle t|$.
 - $\hat{T} = \int t \hat{E}_T$ canonically conjugate to \hat{H}_C .

Clock POVMs

There cannot exist a self-adjoint (monotonic) \hat{T} canonically conjugate to a bounded \hat{H}_{C} .

- Normalization: $\hat{E}_{\mathcal{T}}(G) = \hat{\mathbb{I}}_{\mathcal{H}}$.

Scalar field clock POVMs

A POVM $\hat{E}_T : \mathcal{B}(G) \to \mathcal{L}_{\mathcal{B}}(\mathcal{H})$ satisfies A time operator is a covariant POVM \hat{E}_T wrt. $\hat{\mathcal{H}}_C$:

- ▶ Positivity: $\hat{E}_T(X) \ge 0 \ \forall X \in \mathcal{B}(G)$. ▶ $\hat{E}_T(X+t) = \hat{U}_C(t)\hat{E}_X \hat{U}_C^{\dagger}(t)$, with $\hat{U}_C \equiv e^{-i\hat{H}_C t}$.
 - In the simplest case, $\hat{E}_T \propto dt |t\rangle \langle t|$.
- σ -additivity: $\hat{E}_T(\cup_i X_i) = \sum_i \hat{E}_T(X_i)$. $\hat{T} = \int t \hat{E}_T$ canonically conjugate to \hat{H}_C .

$$\hat{E}_{\chi} = |0\rangle \langle 0| + \mathrm{d}\chi \sum_{n=1}^{\infty} \frac{1}{n!} \int \left[\prod_{i=1}^{n} \mathrm{d}\chi_{i} \,\mathrm{d}\xi_{i}\right] \frac{\sum_{i=1}^{n} \delta(\chi_{i} - \chi)}{n} \left[\prod_{i=1}^{n} \hat{\varphi}^{\dagger}(\chi_{i}, \xi_{i})\right] |0\rangle \langle 0| \left[\prod_{i=1}^{n} \hat{\varphi}(\chi_{i}, \xi_{i})\right]$$

LM, Oriti, Wilson-Ewing (in progress)

Luca Marchetti

Clock POVMs

There cannot exist a self-adjoint (monotonic) \hat{T} canonically conjugate to a bounded \hat{H}_{C} .

- Normalization: $\hat{E}_{\mathcal{T}}(G) = \hat{\mathbb{I}}_{\mathcal{H}}$.

Scalar field clock POVMs

A POVM $\hat{E}_T : \mathcal{B}(G) \to \mathcal{L}_{\mathcal{B}}(\mathcal{H})$ satisfies A time operator is a covariant POVM \hat{E}_T wrt. $\hat{\mathcal{H}}_C$:

- ▶ Positivity: $\hat{E}_T(X) \ge 0 \ \forall X \in \mathcal{B}(G)$. ▶ $\hat{E}_T(X+t) = \hat{U}_C(t)\hat{E}_X \hat{U}_C^{\dagger}(t)$, with $\hat{U}_C \equiv e^{-i\hat{H}_C t}$.
 - In the simplest case, $\hat{E}_T \propto dt |t\rangle \langle t|$.
- σ -additivity: $\hat{E}_T(\cup_i X_i) = \sum_i \hat{E}_T(X_i)$. $\hat{T} = \int t \hat{E}_T$ canonically conjugate to \hat{H}_C .

LM, Oriti, Wilson-Ewing (in progress)

Luca Marchetti

Clock POVMs

There cannot exist a self-adjoint (monotonic) \hat{T} canonically conjugate to a bounded \hat{H}_{C} .

- Normalization: $\hat{E}_{\mathcal{T}}(G) = \hat{\mathbb{I}}_{\mathcal{H}}$.

Scalar field clock POVMs

A POVM $\hat{E}_T : \mathcal{B}(G) \to \mathcal{L}_{\mathcal{B}}(\mathcal{H})$ satisfies A time operator is a covariant POVM \hat{E}_T wrt. $\hat{\mathcal{H}}_C$:

- ▶ Positivity: $\hat{E}_T(X) \ge 0 \ \forall X \in \mathcal{B}(G)$. ▶ $\hat{E}_T(X+t) = \hat{U}_C(t)\hat{E}_X \hat{U}_C^{\dagger}(t)$, with $\hat{U}_C \equiv e^{-i\hat{H}_C t}$.
 - In the simplest case, $\hat{E}_T \propto dt |t\rangle \langle t|$.
- σ -additivity: $\hat{E}_T(\cup_i X_i) = \sum_i \hat{E}_T(X_i)$. $\hat{T} = \int t \hat{E}_T$ canonically conjugate to \hat{H}_C .

$$\hat{E}_{\chi} = |0\rangle \langle 0| + d\chi \sum_{n=1}^{\infty} \frac{1}{n!} \int \left[\prod_{i=1}^{n} d\chi_{i} d\xi_{i}\right] \frac{\sum_{i=1}^{n} \delta(\chi_{i} - \chi)}{n} \left[\prod_{i=1}^{n} \hat{\varphi}^{\dagger}(\chi_{i}, \xi_{i})\right] |0\rangle \langle 0| \left[\prod_{i=1}^{n} \hat{\varphi}(\chi_{i}, \xi_{i})\right] \\ \checkmark \text{ Positive, normalized and } \sigma\text{-additive.} \qquad \checkmark \hat{\Pi}_{\chi}\text{-covariant; } \hat{\chi} = \int \chi \hat{E}_{\chi} = \text{ intensive scalar field.} \\ \hat{E}_{\chi} \text{ is a POVM} \qquad \qquad \hat{E}_{\chi} \text{ represents a scalar field measurement}$$

LM, Oriti, Wilson-Ewing (in progress)

Clock POVMs

There cannot exist a self-adjoint (monotonic) \hat{T} canonically conjugate to a bounded \hat{H}_{C} .

A POVM $\hat{E}_T : \mathcal{B}(G) \to \mathcal{L}_B(\mathcal{H})$ satisfies

• Positivity:
$$\hat{E}_T(X) \ge 0 \ \forall X \in \mathcal{B}(G).$$

- Normalization: $\hat{E}_T(G) = \hat{\mathbb{I}}_{\mathcal{H}}$.
- σ -additivity: $\hat{E}_T(\cup_i X_i) = \sum_i \hat{E}_T(X_i)$.

A time operator is a covariant POVM \hat{E}_T wrt. \hat{H}_C :

- $\hat{E}_T(X+t) = \hat{U}_C(t)\hat{E}_X\hat{U}_C^{\dagger}(t), \text{ with } \hat{U}_C \equiv e^{-i\hat{H}_C t}.$
- In the simplest case, $\hat{E}_T \propto \mathrm{d}t \ket{t} \langle t |$.
- $\hat{T} = \int t \hat{E}_T$ canonically conjugate to \hat{H}_C .

$$\begin{split} \hat{E}_{\chi} &= |0\rangle \langle 0| + \mathrm{d}\chi \sum_{n=1}^{\infty} \frac{1}{n!} \int \left[\prod_{i=1}^{n} \mathrm{d}\chi_{i} \, \mathrm{d}\xi_{i}\right] \frac{\sum_{i=1}^{n} \delta(\chi_{i} - \chi)}{n} \left[\prod_{i=1}^{n} \hat{\varphi}^{\dagger}(\chi_{i}, \xi_{i})\right] |0\rangle \langle 0| \left[\prod_{i=1}^{n} \hat{\varphi}(\chi_{i}, \xi_{i})\right] \\ \checkmark \text{ Positive, normalized and } \sigma\text{-additive.} \qquad \checkmark \hat{\Pi}_{\chi}\text{-covariant; } \hat{\chi} = \int \chi \hat{E}_{\chi} = \text{ intensive scalar field.} \\ \hat{E}_{\chi} \text{ is a POVM} \qquad \qquad \hat{E}_{\chi} \text{ represents a scalar field measurement} \\ \hline \text{ Relational observables} \\ \hline \text{P.W.-like: } \langle \hat{\Xi}_{\chi} \rangle_{\psi} \propto \langle \{ \hat{\Xi}, \hat{E}_{\chi} \} \rangle_{\psi} \qquad \blacktriangleright \text{ Is it a sensible definition? } \hat{E}_{\chi} \text{ is not a projector!} \\ \bigstar \text{ Compare with previous results when } |\psi\rangle = |\sigma\rangle! \end{split}$$

LM, Oriti, Wilson-Ewing (in progress).

Luca Marchetti