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The relational strategy



Relational strategy: the classical and quantum GR perspective

Background

independence
Problem of

localization
Relational strategy

Quite well understood from a classical perspective, less from a quantum perspective.

QClassicalQ Quantum GR

Physical localization via relational observables:

▶ Take two phase space functions, f and T with

{T ,CH} ̸= 0 (T relational clock).

▶ The relational extension Ff ,T (τ) of f encodes

the value of f when T reads τ .

▶ Evolution in τ is relational.

▶ Ff ,T (τ) is a very complicated function.

▶ Applications almost only for very simple systems.

Dirac approach: Quantize first.

▶ Perspective neutral.

▶ Poor control of the physical Hilbert space.

Reduced approach: Relationality first.

▶ No quantum constraint to solve.

▶ Not perspective neutral. Too complicated to

implement in most of the cases.

Isham 9210011; Rovelli Class. Quantum Grav. 8 297; Dittrich 0507106; Tambornino 1109.0740; Giesel, Thiemann 0711.0119 . . .
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Relational strategy and emergent quantum gravity theories

Background

independence
Problem of

localization
Relational strategy

A genuinely new dimension of the problem arises for emergent QG theories.

Microscopic pre-geo Macroscopic proto-geo

▶ Fundamental d.o.f. are weakly related to

spacetime quantities;

▶ Set of collective

observables;

▶ The latter expected to emerge from the

former in an appropriate phase.

▶ Coarse grained states or

probability distributions.

The quantities whose evolution we want to describe relationally are the

result of a coarse-graining of some fundamental d.o.f.

Effective approaches:
▶ More mathematical control and physical insights.

▶ Relevant for observative purposes.

LM, Oriti 2008.02774; Giulini 0603087; Kuchar Int.J.Mod.Phys.D 20(2011); Isham 9210011; Rovelli Class. Quantum Grav. 8 297;
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Introduction to Group Field Theory



Group Field Theory and spinfoam models
D
efi

n
it
io
n

Group Field Theories: theories of

a field φ : G d → C defined on

d copies of a group manifold G .

d is the dimension of the “spacetime to be”

(d = 4) and G is the local gauge group of gravity,

G = SL(2,C) or, in some cases, G = SU(2).

A
ct
io
n

S[φ, φ̄] =

∫
dgaφ̄(ga)K[φ](ga) +

∑
γ

λγ

nγ
TrVγ [φ] + c.c. .

▶ Interaction terms are combinatorially non-local.

▶ Field arguments convoluted pairwise following the combinatorial

pattern dictated by the graph γ:

TrVγ [φ] =

∫ nγ∏
i=1

dga
∏

(a,i ;b,j)

Vγ(g (i)
a , g

(j)
b )

nγ∏
i=1

φ(g (i)
a ) .

g′4g′3g′2g′1

g1 g2 g3 g4

K y 7

g′9

g′6

g′2

g10

g′10
g′8

g′5
g′1

g1
g2

g3
g4

g′4
g5
g6
g7

g′7
g′3

g′8
g9

V5

P
ar
ti
ti
o
n
fu
n
ct
io
n

Z [φ, φ̄] =
∑
Γ

wΓ({λγ})AΓ

= complete spinfoam model.

▶ Γ = stranded diagrams dual to d-dimensional cellular complexes of arbitrary topology.

▶ Amplitudes AΓ = sums over group theoretic data associated to the cellular complex.

▶ K and Vγ chosen to match the desired spinfoam model.

Oriti 1110.5606; Reisenberger, Rovelli 0002083; De Pietri, Petronio 0004045; Gurau 1006.0714; Baratin, Oriti 1002.4723; Finocchiaro, Oriti 1812.03550.
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Group Field Theory and Loop Quantum Gravity
F
u
n
d
a
m
en

ta
l
q
u
a
n
ta

(ciaoOne-particle Hilbert space(

The one-particle Hilbert space is Htetra ⊂ ⊗4
a=1H∆a (subset defined by the imposition of constraints)

Lie algebra (metric)

H∆a = L2(g)

Lie group (connection)

H∆a = L2(G)

Representation space

H∆a =
⊕

Ja
HJa

(ciaoConstraints(

Geometricity constraints (appropriately encoded in K and Vγ) allow for a

d − 1-simplicial interpretation of the fundamental quanta:

Closure Simplicity∑
a Ba = 0

(faces of the tetrahedron close).

▶ X · (B − γ ⋆ B)a = 0 (EPRL);

▶ X · Ba = 0 (BC).
BgB4Bg

B1

BgB2Bg

B3

•

yL
Q
G
y

▶ Impose simplicity and reduce to G = SU(2).

▶ Impose closure (gauge invariance).

Htetra =
⊕

j⃗ Inv
[⊗4

a=1Hja

]
= open spin-network vertex space

yNon-comm.y

FT

Peter-Weyl

Theorem

Finocchiaro, Oriti 1812.03550; Baez, Barrett 9903060; Baratin, Oriti 1002.4723; Gielen, Oriti 1004.5371; Oriti 1310.7786.

Luca Marchetti Developments in GFT Cosmology 4



Group Field Theory and Loop Quantum Gravity
F
u
n
d
a
m
en

ta
l
q
u
a
n
ta

(ciaoOne-particle Hilbert space(

The one-particle Hilbert space is Htetra ⊂ ⊗4
a=1H∆a (subset defined by the imposition of constraints)

Lie algebra (metric)

H∆a = L2(g)

Lie group (connection)

H∆a = L2(G)

Representation space

H∆a =
⊕

Ja
HJa

(ciaoConstraints(

Geometricity constraints (appropriately encoded in K and Vγ) allow for a

d − 1-simplicial interpretation of the fundamental quanta:

Closure Simplicity∑
a Ba = 0

(faces of the tetrahedron close).

▶ X · (B − γ ⋆ B)a = 0 (EPRL);

▶ X · Ba = 0 (BC).
BgB4Bg

B1

BgB2Bg

B3

•

yL
Q
G
y

▶ Impose simplicity and reduce to G = SU(2).

▶ Impose closure (gauge invariance).

Htetra =
⊕

j⃗ Inv
[⊗4

a=1Hja

]
= open spin-network vertex space

yNon-comm.y

FT

Peter-Weyl

Theorem

Finocchiaro, Oriti 1812.03550; Baez, Barrett 9903060; Baratin, Oriti 1002.4723; Gielen, Oriti 1004.5371; Oriti 1310.7786.

Luca Marchetti Developments in GFT Cosmology 4



Group Field Theory and Loop Quantum Gravity
F
u
n
d
a
m
en

ta
l
q
u
a
n
ta

(ciaoOne-particle Hilbert space(

The one-particle Hilbert space is Htetra ⊂ ⊗4
a=1H∆a (subset defined by the imposition of constraints)

Lie algebra (metric)

H∆a = L2(g)

Lie group (connection)

H∆a = L2(G)

Representation space

H∆a =
⊕

Ja
HJa

(ciaoConstraints(

Geometricity constraints (appropriately encoded in K and Vγ) allow for a

d − 1-simplicial interpretation of the fundamental quanta:

Closure Simplicity∑
a Ba = 0

(faces of the tetrahedron close).

▶ X · (B − γ ⋆ B)a = 0 (EPRL);

▶ X · Ba = 0 (BC).
BgB4Bg

B1

BgB2Bg

B3

•

yL
Q
G
y

▶ Impose simplicity and reduce to G = SU(2).

▶ Impose closure (gauge invariance).

Htetra =
⊕

j⃗ Inv
[⊗4

a=1Hja

]
= open spin-network vertex space

yNon-comm.y

FT

Peter-Weyl

Theorem

THIS TALK

Finocchiaro, Oriti 1812.03550; Baez, Barrett 9903060; Baratin, Oriti 1002.4723; Gielen, Oriti 1004.5371; Oriti 1310.7786.

Luca Marchetti Developments in GFT Cosmology 4



Group Field Theory and Loop Quantum Gravity
F
u
n
d
a
m
en

ta
l
q
u
a
n
ta

(ciaoOne-particle Hilbert space(

The one-particle Hilbert space is Htetra ⊂ ⊗4
a=1H∆a (subset defined by the imposition of constraints)

Lie algebra (metric)

H∆a = L2(g)

Lie group (connection)

H∆a = L2(G)

Representation space

H∆a =
⊕

Ja
HJa

(ciaoConstraints(

Geometricity constraints (appropriately encoded in K and Vγ) allow for a

d − 1-simplicial interpretation of the fundamental quanta:

Closure Simplicity∑
a Ba = 0

(faces of the tetrahedron close).

▶ X · (B − γ ⋆ B)a = 0 (EPRL);

▶ X · Ba = 0 (BC).
Bgg4Bg

g1

Bgg2Bg

g3
•

yL
Q
G
y

▶ Impose simplicity and reduce to G = SU(2).

▶ Impose closure (gauge invariance).

Htetra =
⊕

j⃗ Inv
[⊗4

a=1Hja

]
= open spin-network vertex space

yNon-comm.y

FT

Peter-Weyl

Theorem

THIS TALK

Finocchiaro, Oriti 1812.03550; Baez, Barrett 9903060; Baratin, Oriti 1002.4723; Gielen, Oriti 1004.5371; Oriti 1310.7786.

Luca Marchetti Developments in GFT Cosmology 4



Group Field Theory and Loop Quantum Gravity
F
u
n
d
a
m
en

ta
l
q
u
a
n
ta

(ciaoOne-particle Hilbert space(

The one-particle Hilbert space is Htetra ⊂ ⊗4
a=1H∆a (subset defined by the imposition of constraints)

Lie algebra (metric)

H∆a = L2(g)

Lie group (connection)

H∆a = L2(G)

Representation space

H∆a =
⊕

Ja
HJa

(ciaoConstraints(

Geometricity constraints (appropriately encoded in K and Vγ) allow for a

d − 1-simplicial interpretation of the fundamental quanta:

Closure Simplicity∑
a Ba = 0

(faces of the tetrahedron close).

▶ X · (B − γ ⋆ B)a = 0 (EPRL);

▶ X · Ba = 0 (BC).
BgJ4Bg

J1

BgJ2Bg

J3
•

yL
Q
G
y

▶ Impose simplicity and reduce to G = SU(2).

▶ Impose closure (gauge invariance).

Htetra =
⊕

j⃗ Inv
[⊗4

a=1Hja

]
= open spin-network vertex space

yNon-comm.y

FT

Peter-Weyl

Theorem

THIS TALK

Finocchiaro, Oriti 1812.03550; Baez, Barrett 9903060; Baratin, Oriti 1002.4723; Gielen, Oriti 1004.5371; Oriti 1310.7786.

Luca Marchetti Developments in GFT Cosmology 4



Group Field Theory and Loop Quantum Gravity
F
u
n
d
a
m
en

ta
l
q
u
a
n
ta

(ciaoOne-particle Hilbert space(

The one-particle Hilbert space is Htetra ⊂ ⊗4
a=1H∆a (subset defined by the imposition of constraints)

Lie algebra (metric)

H∆a = L2(g)

Lie group (connection)

H∆a = L2(G)

Representation space

H∆a =
⊕

Ja
HJa

(ciaoConstraints(

Geometricity constraints (appropriately encoded in K and Vγ) allow for a

d − 1-simplicial interpretation of the fundamental quanta:

Closure Simplicity∑
a Ba = 0

(faces of the tetrahedron close).

▶ X · (B − γ ⋆ B)a = 0 (EPRL);

▶ X · Ba = 0 (BC).
Bgj4Bg

j1

Bgj2Bg

j3
•

yL
Q
G
y

▶ Impose simplicity and reduce to G = SU(2).

▶ Impose closure (gauge invariance).

Htetra =
⊕

j⃗ Inv
[⊗4

a=1Hja

]
= open spin-network vertex space

yNon-comm.y

FT

Peter-Weyl

Theorem

THIS TALK

Finocchiaro, Oriti 1812.03550; Baez, Barrett 9903060; Baratin, Oriti 1002.4723; Gielen, Oriti 1004.5371; Oriti 1310.7786.

Luca Marchetti Developments in GFT Cosmology 4



Group Field Theory and Loop Quantum Gravity
F
u
n
d
a
m
en

ta
l
q
u
a
n
ta

(ciaoOne-particle Hilbert space(

The one-particle Hilbert space is Htetra ⊂ ⊗4
a=1H∆a (subset defined by the imposition of constraints)

Lie algebra (metric)

H∆a = L2(g)

Lie group (connection)

H∆a = L2(G)

Representation space

H∆a =
⊕

Ja
HJa

(ciaoConstraints(

Geometricity constraints (appropriately encoded in K and Vγ) allow for a

d − 1-simplicial interpretation of the fundamental quanta:

Closure Simplicity∑
a Ba = 0

(faces of the tetrahedron close).

▶ X · (B − γ ⋆ B)a = 0 (EPRL);

▶ X · Ba = 0 (BC).
Bgj4Bg

j1

Bgj2Bg

j3
•

yL
Q
G
y

▶ Impose simplicity and reduce to G = SU(2).

▶ Impose closure (gauge invariance).

Htetra =
⊕

j⃗ Inv
[⊗4

a=1Hja

]
= open spin-network vertex space

yNon-comm.y

FT

Peter-Weyl

Theorem

THIS TALK

Finocchiaro, Oriti 1812.03550; Baez, Barrett 9903060; Baratin, Oriti 1002.4723; Gielen, Oriti 1004.5371; Oriti 1310.7786.

Luca Marchetti Developments in GFT Cosmology 4



The Group Field Theory Fock space

Tetrahedron wavefunction

φ(g1, . . . , g4)

(subject to constraints)

GFT field operator

φ̂(g1, . . . , g4)

(subject to constraints)

G
F
T

F
o
ck

sp
a
ce FGFT =

∞⊕
V=0

sym
[
H(1)

tetra ⊗ H(2)
tetra ⊗ . . .H(V )

tetra

]
▶ FGFT generated by action of φ̂†(ga) on |0⟩, with [φ̂(ga), φ̂

†(g ′
a )] = IG (ga, g ′

a ).
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Group Field Theory and matter: scalar fields

Group Field Theories: theories of a field
φ : Gd → C defined on the product Gd .

d is the dimension of the “spacetime to be” (d = 4)

and G is the local gauge group of gravity,

G = SL(2,C) or, in some cases, G = SU(2).

ciao

ciao Kinematicsy

Quanta are d − 1-simplices decorated with quantum geometric and scalar data:

▶ Geometricity constraints imposed analogously as before.

▶ Scalar field discretized on each d-simplex: each

d − 1-simplex composing it carries values χ ∈ Rdl .

ciao Dynamics

SGFT obtained by comparing ZGFT with simplicial gravity + scalar fields path integral.

▶ Geometric data enter the action in a non-local and

combinatorial fashion.

▶ Scalar field data are local in interactions.

▶ For minimally coupled, free, massless scalars:

K(ga, gb ;χ
α
, χ
α′) = K(ga, gb ; (χ

α − χ
α′)2)

V5(g
(1)
a , . . . , g (5)

a ,χ) = V5(g
(1)
a , . . . , g (5)

a )

Htetra =

Bgj4Bg

j1

Bgj2Bg

j3
•

Li, Oriti, Zhang 1701.08719; Oriti 0912.2441; Gielen, Oriti 1311.1238; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Sindoni 1602.08104; . . .
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Relational strategy

and the GFT Fock space



Relational strategy in GFT: difficulties

The pre-geometric, many-body nature of GFTs hinders the implementation of the relational strategy!

A
n
te

q
u
a
n
tu
m

Classical

Quantum

▶ N classical GFT atoms: C(i)=G d×Rdl .

▶ ith-atom deparametrizable wrt. a clock χ0,(i).

▶ Synchronize the clocks χ0,(i) −→ tN .

▶ Deparametrized N-atoms system: CN =R×ΓN .

▶ Fred=
⊕

N symHN , generated by (φ†
,|0⟩).

▶ But φ, φ† satisfy equal-time (tF ) CCR!

What is tF ? (Certainly, tF ̸= tN !)

P
o
st

q
u
a
n
tu
m

Relational observables?

Open questions

How to construct them without having manifest

access to diffeos?

Simplest ansatz: localize operators wrt. clock data.

N̂ =

∫
dga dχ φ̂

†(ga, χ)φ̂(ga, χ) ,

N̂(χ) =

∫
dga φ̂

†(ga, χ)φ̂(ga, χ) .

A scalar field should be represented as an

operator on FGFT.

χ = eigenvalue on “synchronous” states.

▶ What about “non-synchronous” states?

▶ Extension to generic observables?

What is relational time in FGFT?

LM, Oriti 2008.02774; Kotecha, Oriti 1801.09964.
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Effective approaches



Emergent effective relational strategy

A
N
T
E
Q
U
A
N
T
U
M

P
O
S
T

Q
U
A
N
T
U
M

PROTO-GEOMETRIC

PRE-GEOMETRIC

Effective
Relational
Strategy

Basic principles

Emergence Relational strategy in terms of

collective observables and states.

Effectiveness Averaged relational localization.

Internal frame not too quantum.

Concrete example: scalar field clock

Emergence

▶ Identify (collective) states |Ψ⟩ admitting a

continuum proto-geometric interpretation.
▶ Identify a set of collective observables:

Ôa χ̂ Π̂ N̂

Geometric
observables

Scalar field and
its momentum

Number
of quanta

⟨·⟩Ψ ⟨·⟩Ψ ⟨·⟩Ψ

Effectivness

▶ It exists a “Hamiltonian” Ĥ such that

i
d

d ⟨χ̂⟩Ψ
⟨Ôa⟩Ψ = ⟨[Ĥ, Ôa]⟩Ψ ,

and whose moments coincide with those of Π̂.
▶ Relative fluctuations of χ̂ on |Ψ⟩ should be ≪1:

∆2
χ ≪ 1 , ∆2

χ ∼ ⟨N̂⟩−1

Ψ .

LM, Oriti 2008.02774; Bojowald, Hoehn, Tsobanjan 1011.3040; Bojowald, Tsobanjan 0906.1772;
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and whose moments coincide with those of Π̂.
▶ Relative fluctuations of χ̂ on |Ψ⟩ should be ≪1:

∆2
χ ≪ 1 , ∆2

χ ∼ ⟨N̂⟩−1

Ψ .

LM, Oriti 2008.02774; Bojowald, Hoehn, Tsobanjan 1011.3040; Bojowald, Tsobanjan 0906.1772;

Luca Marchetti Developments in GFT Cosmology 8



Emergent effective relational strategy

A
N
T
E
Q
U
A
N
T
U
M

P
O
S
T

Q
U
A
N
T
U
M

PROTO-GEOMETRIC

PRE-GEOMETRIC

Effective
Relational
Strategy

Basic principles

Emergence Relational strategy in terms of

collective observables and states.

Effectiveness Averaged relational localization.

Internal frame not too quantum.

Concrete example: scalar field clock

Emergence

▶ Identify (collective) states |Ψ⟩ admitting a

continuum proto-geometric interpretation.
▶ Identify a set of collective observables:
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Coherent Peaked States



The main ingredients
yC

o
lle

ct
iv
e
st
a
te
sy (ciaoGFT condensates

▶ From the GFT perspective, continuum geometries are associated to large number of quanta.

▶ The simplest states that can accommodate infinite number of quanta are condensate states:

|σ⟩ = Nσ exp

[∫
d
dlχ

∫
dga σ(ga, χ

α)φ̂†(ga, χ
α)

]
|0⟩ .

E
ff
ec
ti
ve

d
yn

a
m
ic
s (ciaoMean-field approximation

▶ When interactions are small (certainly satisfied in an appropriate regime) the dynamics of σ is:〈
δS[φ̂, φ̂†]

δφ̂(gI , xα)

〉
σ

=

∫
dha

∫
dχK(ga, ha, (x

α − χ
α)2)σ(ha, χ

α) + λ
δV [φ, φ∗]

δφ∗(ga, xα)

∣∣∣∣
φ=σ

= 0 .

▶ Non-perturbative: equivalent to a mean-field (saddle-point) approximation of Z .

R
el
a
ti
o
n
a
lit
y

(ciaoCondensate Peaked States(

▶ Constructing relational observables on FGFT is difficult (QFT with no continuum intuition).

▶ Relational localization implemented at an effective level on observable averages.

▶ If χµ constitute a reference frame, this can be achieved by assuming

σ = (fixed peaking function η) × (dynamically determined reduced wavefunction σ̃)

LM, Oriti 2008.02774; LM, Oriti 2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Oriti, Sindoni 1311.1238; Gielen 1404.2944.
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Macroscopic cosmological variables and effective relationality

Spatial relational homogeneity:

σ depends on a MCMF “clock” scalar field χ0

yO
b
se
rv
a
b
le
sy

Number, volume (determined e.g. by the mapping with

LQG) and matter operators (notation: (·, ·) =

∫
dχ

0
dga):

X̂ 0 =
(
φ̂

†
, χ

0
φ̂
)

V̂ = (φ̂†
,V [φ̂])

Π̂
0
= −i(φ̂†

, ∂0φ̂) N̂ = (φ̂†
, φ̂)

⟨Ô⟩σx0
= O[σ̃]|χ0=x0 : functionals of

σ̃ localized at x0

V ≡ ⟨V̂ ⟩σx0
=

∑
j
Vj |σ̃j |2(x0)

N ≡ ⟨N̂⟩σx0
=

∑
j
|σ̃j |2(x0)

R
el
a
ti
o
n
a
lit
y

Clock expectation values Clock variances

For large N, x0 has a clear physical meaning:

⟨χ̂0⟩σx0
≡ ⟨X̂ 0⟩σx0

/N (intensive)

= x0
(
1 + δX (x0)/N(x0)

)
⟨Π̂0⟩σx0

= ⟨Ĥσ⟩σx0

(
1 + const./N(x0)

)

For large N, clock fluctuations scale as N−1:

∆2
σx0
χ
0
<

1

N

(
1 +

ϵ

2(x0)2
1

(1 + δX/N)2

)
∆2
σx0

Π0 = ∆2
σx0

Hσ
(
1 + const./N(x0)

)
∆2
σx0

Hσ = ∆2
σx0

N = N−1(x0) .

wavefunction

isotropy

LM, Oriti 2008.02774 ; LM, Oriti 2010.09700.
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Classical limit and validity of the framework
E
ff
ec
ti
ve

d
yn

a
m
ic
s

(ciaoMean-field approximation

▶ Mesoscopic regime: large N but negligible interactions.

▶ Derivative expansion of K (due to peaking properties).

▶ Isotropy: σ̃j ≡ ρje
iθj fundamental variables.

σ̃
′′
j − 2iπ̃0σ̃

′
j − E 2

j σ̃ = 0.

Effective volume dynamics

(
V ′

3V

)2

≃

 2
∑

j Vjρj sgn(ρ
′
j )
√

Ej − Q2
j /ρ

2
j + µ2

j ρ
2
j

3
∑

j Vjρ2j


2

,
V ′′

V
≃

2
∑

j Vj

[
Ej + 2µ2

j ρ
2
j

]
∑

j Vjρ2j

C
la
ss
ic
a
l
lim

it

(ciaoLarge number of quanta (large volume and late times) (

Volume quantum fluctuations under control.

▶ If µ2
j is mildly dependent on j (or one j is

dominating) and equal to 3πG

(V ′
/3V )2 ≃ 4πG/3 flat FLRW

x0 = ⟨χ̂0⟩σx0
.

Clock quantum fluctuations negligible.

⟨Π̂0⟩σx0
= ⟨Ĥσ⟩σx0

(higher moments ≃ 0).

Effective relational framework reliable!

LM, Oriti 2008.02774; LM, Oriti 2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881.
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State-agnostic approach



Effective approach for constrained quantum systems

How does our scheme for extraction

of relational cosmological physics

depend on the specific choice of states?

A “state-agnostic”

strategy is needed!

Effective state-agnostic approach for constrained quantum systems

Construction of the effective system Relational description

Step 1: definition of the quantum phase space

▶ Describe the system with exp. values ⟨Âi ⟩ and moments:

▶ Poisson structure inherited from the algebra structure{
⟨Âi ⟩ , ⟨Âj⟩

}
= (iℏ)−1

〈
[Âi , Âj ]

〉
(same for ∆s).

Step 2: definition of the constraints

▶ ⟨Ĉ⟩ = 0 and ⟨(p̂ol − ⟨p̂ol⟩)Ĉ⟩ = 0 eff. constraints;

▶ Generate gauge transf. on the quantum phase space.

Step 3: truncation scheme (e.g. semiclassicality)

Step 1: choose a clock T̂ ([T̂ , P̂] closes)

Step 2: gauge fixing
▶ At 1st order: ∆(TAi ) = 0, Ai ∈ A\{P̂}.
▶ Use constraints to eliminate P̂-variables.

Step 3: relational rewriting

▶ Determine the remaining gauge flow

which preserves the gauge conditions.

▶ Write evolution of the remaining

variables wrt. T (classical clock).

LM, Gielen, Oriti, Polaczek 2110.11176; Bojowald, Sandhoefer, Skirzewski, Tsobanjan 0804.3365; Bojowald Tsobanjan 0906.1772.
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⟨Âi ⟩ , ⟨Âj⟩
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⟨Âi ⟩ , ⟨Âj⟩
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[Âi , Âj ]
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[Âi , Âj ]
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A state agnostic approach: application to GFT

How can this framework be generalized to a field theory context?

Infinitely many algebra generators. Infinitely many quantum constraints.

Additional truncation scheme

Motivations Coarse-graining truncation

▶ Interest in a coarse grained system

characterized by a small number of

macroscopic (1-body) observables.

▶ Expected to be the case for cosmology.

▶ When the e.o.m. are linear, consider an

integrated 1-body quantum constraint.

▶ Algebra generated by minimal set of physically

relevant operators (including constraint).

S
et
ti
n
g

(ciaoGFT with MCMF scalar field (

▶ Free e.o.m.: Dφ ≡ (m2 + ℏ2∆g + λℏ2
∂
2
χ)φ = 0.

▶ Quantum constr. Ĉ =
∫
φ̂†Dφ̂ = m2N̂ − Λ̂ − λΠ̂2.

▶ Generators: X̂ , Π̂, Π̂2, N̂, Λ̂ and K̂ .

▶ K̂ such that [Λ̂, K̂ ] = iℏαK̂ .

g
R
es
u
lt
sg

(ciaoExpectation values and variances

▶ The procedure can naturally be carried

over by choosing as clock variable K̂ .

▶ Relational evolution of ⟨X̂⟩ in agreement

with classical cosmology.

▶ Fluctuations are decoupled from expect. values.

▶ If they are small at small ⟨K̂⟩ they stay small

even at large ⟨K̂⟩ (probably associated to a

constant ⟨N̂⟩).

LM, Gielen, Oriti, Polaczek 2110.11176.
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Relational strategy in full GFT
yQ

u
a
n
tu
m

M
ec
h
a
n
ic
sy (ciaoClock POVMs

There cannot exist a self-adjoint (monotonic) T̂ canonically conjugate to a bounded ĤC .

A POVM ÊT : B(G) → LB (H) satisfies

▶ Positivity: ÊT (X ) ≥ 0 ∀X ∈ B(G).

▶ Normalization: ÊT (G) = ÎH.

▶ σ-additivity: ÊT (∪iXi ) =
∑

i ÊT (Xi ).

A time operator is a covariant POVM ÊT wrt. ĤC :

▶ ÊT (X + t) = ÛC (t)ÊX Û
†
C (t), with ÛC ≡ e−i ĤC t .

▶ In the simplest case, ÊT ∝ dt |t⟩ ⟨t|.
▶ T̂ =

∫
tÊT canonically conjugate to ĤC .

G
ro
u
p
F
ie
ld

T
h
eo

ry

(ciaoScalar field clock POVMs

Êχ = |0⟩ ⟨0|+dχ

∞∑
n=1

1

n!

∫ [
n∏

i=1

dχi dξi

] ∑n
i=1 δ(χi − χ)

n

[
n∏

i=1

φ̂
†(χi , ξi )

]
|0⟩ ⟨0|

[
n∏

i=1

φ̂(χi , ξi )

]

Positive, normalized and σ-additive. Êχ

Êχ is a POVM

Π̂χ-covariant; χ̂ =
∫
χÊχ = intensive scalar field.

Êχ represents a scalar field measurement

(ciaoRelational observables

P.W.-like: ⟨Ξ̂χ⟩ψ ∝ ⟨{Ξ̂, Êχ}⟩ψ
▶ Is it a sensible definition? Êχ is not a projector!

Compare with previous results when |ψ⟩ = |σ⟩!

LM, Oriti, Wilson-Ewing (in progress).
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▶ Positivity: ÊT (X ) ≥ 0 ∀X ∈ B(G).

▶ Normalization: ÊT (G) = ÎH.
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G
ro
u
p
F
ie
ld

T
h
eo

ry

(ciaoScalar field clock POVMs
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χÊχ = intensive scalar field.
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▶ σ-additivity: ÊT (∪iXi ) =
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