

Developments in Group Field Theory Cosmology

A collective effort: D. Oriti, E. Wilson-Ewing, S. Gielen, M. Sakellariadou, A. Pithis, M. de Cesare, A. Polaczek, A. Jercher, A. Calcinari, R. Dekhil, X. Pang, L. Mickel, T. Ladstätter, P. Fischer, ...

Luca Marchetti ILQGS 18 April 2023

Department of Mathematics and Statistics UNB Fredericton

Overview

• Introduction to Group Field Theory

- · Group Field Theory and spinfoam models
- Group Field Theory and Loop Quantum Gravity
- Including scalar matter

• Group Field Theory Cosmology

- Basic principles
- Homogeneous and isotropic sector
 - Volume
 - Matter
- Inhomogeneous sector
 - First steps and limitations
 - Super-horizon limit
 - Perturbations at all scales

Introduction to Group Field Theory

Definition

Group Field Theories: theories of a field φ : $G^d \to \mathbb{C}$ defined on *d* copies of a group manifold *G*. *d* is the dimension of the "spacetime to be" (*d* = 4) and *G* is the local gauge group of gravity, $G = SL(2, \mathbb{C})$ or, in some cases, G = SU(2).

Oriti 1110.5606; Reisenberger, Rovelli 0002083; De Pietri, Petronio 0004045; Gurau 1006.0714; Baratin, Oriti 1002.4723; Finocchiaro, Oriti 1812.03550.

Definition

Action

Group Field Theories: theories of a field φ : $G^d \to \mathbb{C}$ defined on *d* copies of a group manifold *G*. *d* is the dimension of the "spacetime to be" (*d* = 4) and *G* is the local gauge group of gravity, $G = SL(2, \mathbb{C})$ or, in some cases, G = SU(2).

$$\mathcal{S}[arphi,ar{arphi}] = \int \mathrm{d}g_{s}ar{arphi}(g_{s})\mathcal{K}[arphi](g_{s}) + \sum_{\gamma}rac{\lambda_{\gamma}}{n_{\gamma}} \, \mathsf{Tr}_{\mathcal{V}\gamma}[arphi] + \mathsf{c.c.} \; .$$

- Interaction terms are combinatorially non-local.
- Field arguments convoluted pairwise following the combinatorial pattern dictated by the graph γ:

$$\mathsf{Tr}_{\mathcal{V}_{\gamma}}[\varphi] = \int \prod_{i=1}^{n_{\gamma}} \mathrm{d}g_{a} \prod_{(a,i;b,j)} \mathcal{V}_{\gamma}(g_{a}^{(i)}, g_{b}^{(j)}) \prod_{i=1}^{n_{\gamma}} \varphi(g_{a}^{(i)})$$

Oriti 1110.5606; Reisenberger, Rovelli 0002083; De Pietri, Petronio 0004045; Gurau 1006.0714; Baratin, Oriti 1002.4723; Finocchiaro, Oriti 1812.03550.

Group Field Theories: theories of a field φ : $G^d \to \mathbb{C}$ defined on d copies of a group manifold G. *d* is the dimension of the "spacetime to be" (*d* = 4) and *G* is the local gauge group of gravity, $G = SL(2, \mathbb{C})$ or, in some cases, G = SU(2).

$$\mathcal{S}[arphi,ar{arphi}] = \int \mathrm{d}g_{s}ar{arphi}(g_{s})\mathcal{K}[arphi](g_{s}) + \sum_{\gamma}rac{\lambda_{\gamma}}{n_{\gamma}} \, \mathsf{Tr}_{\mathcal{V}\gamma}[arphi] + \mathsf{c.c.} \, .$$

- Interaction terms are combinatorially non-local.
- Field arguments convoluted pairwise following the combinatorial pattern dictated by the graph γ:

$$\mathsf{Tr}_{\mathcal{V}_{\gamma}}[\varphi] = \int \prod_{i=1}^{n_{\gamma}} \mathrm{d}g_{a} \prod_{(a,i;b,j)} \mathcal{V}_{\gamma}(g_{a}^{(i)}, g_{b}^{(j)}) \prod_{i=1}^{n_{\gamma}} \varphi(g_{a}^{(i)}) \,.$$

$$Z[arphi,ar{arphi}] = \sum_{\Gamma} w_{\Gamma}(\{\lambda_{\gamma}\})A_{\Gamma}$$

- Γ = stranded diagrams dual to *d*-dimensional cellular complexes of arbitrary topology.
- Amplitudes A_{Γ} = sums over group theoretic data associated to the cellular complex.

Oriti 1110.5606; Reisenberger, Rovelli 0002083; De Pietri, Petronio 0004045; Gurau 1006.0714; Baratin, Oriti 1002.4723; Finocchiaro, Oriti 1812.03550

Luca Marchetti

Action

Partition function

Group Field Theories: theories of a field $\varphi : G^d \to \mathbb{C}$ defined on d copies of a group manifold G. *d* is the dimension of the "spacetime to be" (d = 4) and *G* is the local gauge group of gravity, $G = SL(2, \mathbb{C})$ or, in some cases, G = SU(2).

$$S[arphi,ar{arphi}] = \int \mathrm{d}g_{a}ar{arphi}(g_{a})\mathcal{K}[arphi](g_{a}) + \sum_{\gamma}rac{\lambda_{\gamma}}{n_{\gamma}}\operatorname{Tr}_{\mathcal{V}\gamma}[arphi] + \mathrm{c.c.}$$

- Interaction terms are combinatorially non-local.
- Field arguments convoluted pairwise following the combinatorial pattern dictated by the graph γ:

$$\mathsf{Tr}_{\mathcal{V}_{\gamma}}[\varphi] = \int \prod_{i=1}^{n_{\gamma}} \mathrm{d}g_{a} \prod_{(a,i;b,j)} \mathcal{V}_{\gamma}(g_{a}^{(i)}, g_{b}^{(j)}) \prod_{i=1}^{n_{\gamma}} \varphi(g_{a}^{(i)}) \, .$$

$$Z[\varphi, \bar{\varphi}] = \sum_{\Gamma} w_{\Gamma}(\{\lambda_{\gamma}\})A_{\Gamma} = \text{ complete spinfoam model.}$$

- Γ = stranded diagrams dual to *d*-dimensional cellular complexes of arbitrary topology.
- Amplitudes A_{Γ} = sums over group theoretic data associated to the cellular complex.
- \blacktriangleright \mathcal{K} and \mathcal{V}_{γ} chosen to match the desired spinfoam model.

Oriti 1110.5606; Reisenberger, Rovelli 0002083; De Pietri, Petronio 0004045; Gurau 1006.0714; Baratin, Oriti 1002.4723; Finocchiaro, Oriti 1812.03550
Luca Marchetti Developments in GFT Cosmology 1

Action

The one-particle Hilbert space is $\mathcal{H}_{tetra} \subset \otimes_{a=1}^4 \mathcal{H}_{\Delta_a}$ (subset defined by the imposition of constraints)

Finocchiaro, Oriti 1812.03550; Baez, Barrett 9903060; Baratin, Oriti 1002.4723; Gielen, Oriti 1004.5371; Oriti 1310.7786.

The one-particle Hilbert space is $\mathcal{H}_{tetra} \subset \otimes_{a=1}^4 \mathcal{H}_{\Delta_a}$ (subset defined by the imposition of constraints)

```
Lie algebra (metric)
```

$$\mathcal{H}_{\Delta_a} = L^2(\mathfrak{g})$$

Constraints

Geometricity constraints (appropriately encoded in \mathcal{K} and \mathcal{V}_{γ}) allow for a d-1-simplicial interpretation of the fundamental quanta:

Closure

Simplicity

 $\sum_{a} B_{a} = 0$ (faces of the tetrahedron close).

• $X \cdot (B - \gamma \star B)_a = 0$ (EPRL);

$$\blacktriangleright X \cdot B_a = 0 (BC).$$

Finocchiaro, Oriti 1812.03550; Baez, Barrett 9903060; Baratin, Oriti 1002.4723; Gielen, Oriti 1004.5371; Oriti 1310.7786.

The one-particle Hilbert space is $\mathcal{H}_{tetra} \subset \otimes_{a=1}^4 \mathcal{H}_{\Delta_a}$ (subset defined by the imposition of constraints)

```
Lie algebra (metric)
```

$$\mathcal{H}_{\Delta_a} = L^2(\mathfrak{g})$$

Constraints

Finocchiaro, Oriti 1812.03550; Baez, Barrett 9903060; Baratin, Oriti 1002.4723; Gielen, Oriti 1004.5371; Oriti 1310.7786.

The one-particle Hilbert space is $\mathcal{H}_{tetra} \subset \otimes_{a=1}^4 \mathcal{H}_{\Delta_a}$ (subset defined by the imposition of constraints)

Lie algebra (metric) $\mathcal{H}_{\Delta_a} = L^2(\mathfrak{g}) \xleftarrow{\text{Non-comm.}}{\text{FT}} \qquad \mathcal{H}_{\Delta_a} = L^2(G)$ Constraints

Geometricity constraints (appropriately encoded in \mathcal{K} and \mathcal{V}_{γ}) allow for a d-1-simplicial interpretation of the fundamental quanta:

ClosureSimplicityTHIS TALK $\sum_a B_a = 0$ $\blacktriangleright X \cdot (B - \gamma \star B)_a = 0$ (EPRL); \mathcal{B}_3 (faces of the tetrahedron close). $\blacktriangleright X \cdot B_a = 0$ (BC).

Finocchiaro, Oriti 1812.03550; Baez, Barrett 9903060; Baratin, Oriti 1002.4723; Gielen, Oriti 1004.5371; Oriti 1310.7786.

Developments in GFT Cosmology

g4

The one-particle Hilbert space is $\mathcal{H}_{tetra} \subset \otimes_{a=1}^4 \mathcal{H}_{\Delta_a}$ (subset defined by the imposition of constraints)

d - 1-simplicial interpretation of the fundamental quanta:

Closure

Simplicity THIS TALK $\blacktriangleright X \cdot (B - \gamma \star B)_a = 0$ (EPRL);

 $\sum_{a} B_{a} = 0$ (faces of the tetrahedron close).

$$\bullet \quad X \cdot B_a = 0 \text{ (BC)}.$$

Finocchiaro, Oriti 1812.03550; Baez, Barrett 9903060; Baratin, Oriti 1002.4723; Gielen, Oriti 1004.5371; Oriti 1310.7786.

The one-particle Hilbert space is $\mathcal{H}_{tetra} \subset \otimes_{a=1}^4 \mathcal{H}_{\Delta_a}$ (subset defined by the imposition of constraints)

Geometricity constraints (appropriately encoded in \mathcal{K} and \mathcal{V}_{γ}) allow for a d-1-simplicial interpretation of the fundamental quanta:

ClosureSimplicity j_3 $\sum_a B_a = 0$ $\blacktriangleright X \cdot (B - \gamma \star B)_a = 0$ (EPRL);(faces of the tetrahedron close). $\blacktriangleright X \cdot B_a = 0$ (BC).

- Impose simplicity and reduce to G = SU(2).
- Impose closure (gauge invariance).

Finocchiaro, Oriti 1812.03550; Baez, Barrett 9903060; Baratin, Oriti 1002.4723; Gielen, Oriti 1004.5371; Oriti 1310.7786.

LQG

The one-particle Hilbert space is $\mathcal{H}_{tetra} \subset \otimes_{a=1}^4 \mathcal{H}_{\Delta_a}$ (subset defined by the imposition of constraints)

Geometricity constraints (appropriately encoded in \mathcal{K} and \mathcal{V}_{γ}) allow for a d-1-simplicial interpretation of the fundamental quanta:

Closure

 $\sum_{a} B_a = 0$ (faces of the tetrahedron close). $\blacktriangleright X \cdot B_a = 0$ (BC).

• $X \cdot (B - \gamma \star B)_a = 0$ (EPRL);

$$j_3$$
 j_1 j_1

- Impose simplicity and reduce to G = SU(2).
 - Impose closure (gauge invariance).

$$\begin{aligned} \mathcal{H}_{\mathsf{tetra}} &= \bigoplus_{\vec{j}} \mathsf{Inv} \left[\bigotimes_{a=1}^{4} \mathcal{H}_{j_a} \right] \\ &= \mathsf{open \ spin-network \ vertex \ space} \end{aligned}$$

Finocchiaro, Oriti 1812.03550: Baez, Barrett 9903060: Baratin, Oriti 1002.4723: Gielen, Oriti 1004.5371: Oriti 1310.7786.

Developments in GFT Cosmology

Simplicity

LQG

Tetrahedron wavefunction

 $\varphi(g_1,\ldots,g_4)$ (subject to constraints)

Oriti 1310.7786; Oriti 1408.7112; Sahlman, Sherif 2302.03612.

Oriti 1310.7786; Oriti 1408.7112; Sahlman, Sherif 2302.03612.

$$\mathcal{F}_{\mathsf{GFT}} = \bigoplus_{V=0}^{\infty} \operatorname{sym} \left[\mathcal{H}_{\mathsf{tetra}}^{(1)} \otimes \mathcal{H}_{\mathsf{tetra}}^{(2)} \otimes \ldots \mathcal{H}_{\mathsf{tetra}}^{(V)} \right]$$

- ▶ \mathcal{F}_{GFT} generated by action of $\hat{\varphi}^{\dagger}(g_a)$ on $|0\rangle$, with $[\hat{\varphi}(g_a), \hat{\varphi}^{\dagger}(g'_a)] = \mathbb{I}_G(g_a, g'_a)$.
- $\mathcal{H}_{\Gamma} \subset \mathcal{F}_{GFT}$, \mathcal{H}_{Γ} space of states associated to connected simplicial complexes Γ .
- Generic states do not correspond to connected simplicial lattices nor classical simplicial geometries.
- ▶ Similar to *H*_{LQG} but also different: no continuum intuition, orthogonality wrt nodes, not graphs.

Oriti 1310.7786; Oriti 1408.7112; Sahlman, Sherif 2302.03612.

$$\mathcal{F}_{\mathsf{GFT}} = \bigoplus_{V=0}^{\infty} \operatorname{sym} \left[\mathcal{H}_{\mathsf{tetra}}^{(1)} \otimes \mathcal{H}_{\mathsf{tetra}}^{(2)} \otimes \ldots \mathcal{H}_{\mathsf{tetra}}^{(V)} \right]$$

- ▶ \mathcal{F}_{GFT} generated by action of $\hat{\varphi}^{\dagger}(g_a)$ on $|0\rangle$, with $[\hat{\varphi}(g_a), \hat{\varphi}^{\dagger}(g'_a)] = \mathbb{I}_G(g_a, g'_a)$.
- $\mathcal{H}_{\Gamma} \subset \mathcal{F}_{GFT}$, \mathcal{H}_{Γ} space of states associated to connected simplicial complexes Γ .
- Generic states do not correspond to connected simplicial lattices nor classical simplicial geometries.
- ▶ Similar to *H*_{LQG} but also different: no continuum intuition, orthogonality wrt nodes, not graphs.

Volume operator
$$\hat{V} = \int dg_a^{(1)} dg_a^{(2)} V(g_a^{(1)}, g_a^{(2)}) \hat{\varphi}^{\dagger}(g_a^{(1)}) \hat{\varphi}(g_a^{(2)}) = \sum_{j_a, m_a, \iota} V_{j_a, \iota} \hat{\varphi}^{\dagger}_{j_a, m_a, \iota} \hat{\varphi}_{j_a, m_a, \iota}$$

Generic second quantization prescription to build a m + n-body operator: sandwich matrix elements between spin-network states between m powers of φ² and n powers of φ².

Oriti 1310.7786; Oriti 1408.7112; Sahlman, Sherif 2302.03612.

Luca Marchetti

Operators

Group Field Theories: theories of a field $\varphi: G^d \to \mathbb{C}$ defined on the product G^d .

 $\begin{aligned} d \text{ is the dimension of the "spacetime to be"} & (d = 4) \\ & \text{and } G \text{ is the local gauge group of gravity,} \\ & G = \mathrm{SL}(2,\mathbb{C}) \text{ or, in some cases, } G = \mathrm{SU}(2). \end{aligned}$

Kinematics

Quanta are d-1-simplices decorated with quantum geometric and scalar data:

Geometricity constraints imposed analogously as before.

Dynamics

 S_{GFT} obtained by comparing Z_{GFT} with simplicial gravity + scalar fields path integral.

 Geometric data enter the action in a non-local and combinatorial fashion.

Li, Oriti, Zhang 1701.08719; Oriti 0912.2441; Gielen, Oriti 1311.1238; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Sindoni 1602.08104; ...

Group Field Theories: theories of a field φ : $G^d \times \mathbb{R}^{d_l} \to \mathbb{C}$ defined on the product of G^d and \mathbb{R}^{d_l} . d is the dimension of the "spacetime to be" (d = 4)and G is the local gauge group of gravity, $G = SL(2, \mathbb{C})$ or, in some cases, G = SU(2).

Kinematics

Quanta are d - 1-simplices decorated with quantum geometric and scalar data:

- Geometricity constraints imposed analogously as before.
- Scalar field discretized on each *d*-simplex: each *d* − 1-simplex composing it carries values *x* ∈ ℝ^d₁.

Dynamics

 S_{GFT} obtained by comparing Z_{GFT} with simplicial gravity + scalar fields path integral.

- Geometric data enter the action in a non-local and combinatorial fashion.
- Scalar field data are local in interactions.
- ▶ For minimally coupled, free, massless scalars:

 $\mathcal{K}(g_a, g_b; \chi^{\alpha}, \chi^{\alpha'}) = \mathcal{K}(g_a, g_b; (\chi^{\alpha} - \chi^{\alpha'})^2)$ $\mathcal{V}_5(g_a^{(1)}, \dots, g_a^{(5)}, \chi) = \mathcal{V}_5(g_a^{(1)}, \dots, g_a^{(5)})$

Li, Oriti, Zhang 1701.08719; Oriti 0912.2441; Gielen, Oriti 1311.1238; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Sindoni 1602.08104; ...

Group Field Theory Cosmology

Collective states

GFT condensates

From the GFT perspective, continuum geometries are associated to large number of quanta.

The simplest states that can accommodate infinite number of quanta are condensate states:

$$|\sigma\rangle = \mathcal{N}_{\sigma} \exp\left[\int \mathrm{d}^{d_{f}} \chi \int \mathrm{d}g_{\mathfrak{s}} \,\sigma(g_{\mathfrak{s}},\chi^{\alpha}) \hat{\varphi}^{\dagger}(g_{\mathfrak{s}},\chi^{\alpha})\right] |0\rangle$$

LM, Oriti 2008.02774; LM, Oriti 2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Oriti, Sindoni 1311.1238; Gielen 1404.2944

Collective states

GFT condensates

From the GFT perspective, continuum geometries are associated to large number of quanta.

The simplest states that can accommodate infinite number of quanta are condensate states:

$$|\sigma\rangle = \mathcal{N}_{\sigma} \exp\left[\int \mathrm{d}^{d_{l}} \chi \int \mathrm{d}g_{\mathfrak{s}} \, \sigma(g_{\mathfrak{s}}, \chi^{\alpha}) \hat{\varphi}^{\dagger}(g_{\mathfrak{s}}, \chi^{\alpha})\right] |0\rangle \,.$$

Mean-field approximation

• When interactions are small (certainly satisfied in an appropriate regime) the dynamics of σ is:

$$\left\langle \frac{\delta S[\hat{\varphi}, \hat{\varphi}^{\dagger}]}{\delta \hat{\varphi}(g_{I}, x^{\alpha})} \right\rangle_{\sigma} = \int \mathrm{d}h_{a} \int \mathrm{d}\chi \, \mathcal{K}(g_{a}, h_{a}, (x^{\alpha} - \chi^{\alpha})^{2}) \sigma(h_{a}, \chi^{\alpha}) + \lambda \frac{\delta V[\varphi, \varphi^{*}]}{\delta \varphi^{*}(g_{a}, x^{\alpha})} \bigg|_{\varphi = \sigma} = 0 \,.$$

▶ Non-perturbative: equivalent to a mean-field (saddle-point) approximation of Z.

LM, Oriti 2008.02774; LM, Oriti 2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Oriti, Sindoni 1311.1238; Gielen 1404.2944

Collective states

GFT condensates

From the GFT perspective, continuum geometries are associated to large number of quanta.

The simplest states that can accommodate infinite number of quanta are condensate states:

$$|\sigma\rangle = \mathcal{N}_{\sigma} \exp\left[\int \mathrm{d}^{d_{l}} \chi \int \mathrm{d}g_{\mathfrak{s}} \, \sigma(g_{\mathfrak{s}}, \chi^{\alpha}) \hat{\varphi}^{\dagger}(g_{\mathfrak{s}}, \chi^{\alpha})\right] |0\rangle \,.$$

Mean-field approximation

• When interactions are small (certainly satisfied in an appropriate regime) the dynamics of σ is:

$$\left\langle \frac{\delta S[\hat{\varphi}, \hat{\varphi}^{\dagger}]}{\delta \hat{\varphi}(g_{I}, x^{\alpha})} \right\rangle_{\sigma} = \int \mathrm{d}h_{a} \int \mathrm{d}\chi \, \mathcal{K}(g_{a}, h_{a}, (x^{\alpha} - \chi^{\alpha})^{2}) \sigma(h_{a}, \chi^{\alpha}) + \lambda \frac{\delta V[\varphi, \varphi^{*}]}{\delta \varphi^{*}(g_{a}, x^{\alpha})} \bigg|_{\varphi = \sigma} = 0 \,.$$

▶ Non-perturbative: equivalent to a mean-field (saddle-point) approximation of Z.

Condensate Peaked States

Constructing relational observables on *F*_{GFT} is difficult (QFT with no continuum intuition).

LM, Oriti 2008.02774; LM, Oriti 2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Oriti, Sindoni 1311.1238; Gielen 1404.2944.

Collective states

Relationality

GFT condensates

From the GFT perspective, continuum geometries are associated to large number of quanta.

The simplest states that can accommodate infinite number of quanta are condensate states:

$$|\sigma
angle = \mathcal{N}_{\sigma} \exp\left[\int \mathrm{d}^{d_l}\chi \int \mathrm{d}g_{\mathfrak{s}} \,\sigma(g_{\mathfrak{s}},\chi^{lpha})\hat{\varphi}^{\dagger}(g_{\mathfrak{s}},\chi^{lpha})
ight]|0
angle \,.$$

Mean-field approximation

• When interactions are small (certainly satisfied in an appropriate regime) the dynamics of σ is:

$$\left\langle \frac{\delta S[\hat{\varphi}, \hat{\varphi}^{\dagger}]}{\delta \hat{\varphi}(g_{I}, x^{\alpha})} \right\rangle_{\sigma} = \int \mathrm{d}h_{a} \int \mathrm{d}\chi \, \mathcal{K}(g_{a}, h_{a}, (x^{\alpha} - \chi^{\alpha})^{2}) \sigma(h_{a}, \chi^{\alpha}) + \lambda \frac{\delta V[\varphi, \varphi^{*}]}{\delta \varphi^{*}(g_{a}, x^{\alpha})} \bigg|_{\varphi = \sigma} = 0 \,.$$

▶ Non-perturbative: equivalent to a mean-field (saddle-point) approximation of Z.

Condensate Peaked States

- Constructing relational observables on \mathcal{F}_{GFT} is difficult (QFT with no continuum intuition).
- Relational localization implemented at an effective level on observable averages.
- If χ^{μ} constitute a reference frame, this can be achieved by assuming

 $\sigma = (\text{fixed peaking function } \eta) \times (\text{dynamically determined reduced wavefunction } \tilde{\sigma})$

LM, Oriti 2008.02774; LM, Oriti 2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Oriti, Sindoni 1311.1238; Gielen 1404.2944.

Homogeneous sector

Spatial relational homogeneity:

 σ depends on a MCMF "clock" scalar field χ^0 (D = minisuperspace + clock)

Oriti 2008.02774; LM, Oriti 2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Oriti, Pithis 2112.00091.

Spatial relational homogeneity: σ depends on a MCMF "clock" scalar field χ^0 (D = minisuperspace + clock)

Collective Observables

Number, volume (determined e.g. by the mapping with LQG) and matter operators (notation: $(\cdot, \cdot) = \int d\chi^0 dg_a$):

$$\begin{split} \hat{N} &= (\hat{\varphi}^{\dagger}, \hat{\varphi}) & \hat{V} &= (\hat{\varphi}^{\dagger}, V[\hat{\varphi}]) \\ \hat{\chi}^{0} &= \left(\hat{\varphi}^{\dagger}, \chi^{0} \hat{\varphi}\right) & \hat{\Pi}^{0} &= -i(\hat{\varphi}^{\dagger}, \partial_{0} \hat{\varphi}) \end{split}$$

• Observables \leftrightarrow collective operators on Fock space.

Oriti 2008.02774; LM, Oriti 2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Oriti, Pithis 2112.00091.

Spatial relational homogeneity: σ depends on a MCMF "clock" scalar field χ^0 (D = minisuperspace + clock)

Collective Observables

Number, volume (determined e.g. by the mapping with LQG) and matter operators (notation: $(\cdot, \cdot) = \int d\chi^0 dg_a$):

$$\begin{split} \hat{N} &= (\hat{\varphi}^{\dagger}, \hat{\varphi}) & \hat{V} &= (\hat{\varphi}^{\dagger}, V[\hat{\varphi}]) \\ \hat{\chi}^{0} &= \left(\hat{\varphi}^{\dagger}, \chi^{0} \hat{\varphi}\right) & \hat{\Pi}^{0} &= -i(\hat{\varphi}^{\dagger}, \partial_{0} \hat{\varphi}) \end{split}$$

- Observables \leftrightarrow collective operators on Fock space.
- $\begin{array}{l} \blacktriangleright \quad \langle \hat{O} \rangle_{\sigma_{\chi^0}} = O[\tilde{\sigma}]|_{\chi^0 = x^0}: \\ \text{functionals of } \tilde{\sigma} \\ \text{localized at } x^0. \end{array}$

Oriti 2008.02774; LM, Oriti 2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Oriti, Pithis 2112.00091.

Spatial relational homogeneity: σ depends on a MCMF "clock" scalar field χ^0 ($\mathcal{D} = \text{minisuperspace} + \text{clock}$)

Int

Collective Observables

Number, volume (determined e.g. by the mapping with LQG) and matter operators (notation: $(\cdot, \cdot) = \int d\chi^0 dg_a$):

- $$\begin{split} \hat{N} &= (\hat{\varphi}^{\dagger}, \hat{\varphi}) & \hat{V} &= (\hat{\varphi}^{\dagger}, V[\hat{\varphi}]) \\ \hat{\chi}^{0} &= \left(\hat{\varphi}^{\dagger}, \chi^{0} \hat{\varphi}\right) & \hat{\Pi}^{0} &= -i(\hat{\varphi}^{\dagger}, \partial_{0} \hat{\varphi}) \end{split}$$
- ▶ Observables ↔ collective operators on Fock space.
- $\begin{array}{l} \blacktriangleright \quad \langle \hat{O} \rangle_{\sigma_{\chi^0}} = O[\tilde{\sigma}]|_{\chi^0 = x^0}: \\ \text{functionals of } \tilde{\sigma} \\ \text{localized at } x^0. \end{array}$

Oriti 2008.02774; LM, Oriti 2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Oriti, Pithis 2112.00091.

Developments in GFT Cosmology

Relationality

Averaged evolution wrt x⁰ is physical:

- Emergent effective relational description:
 - Small clock quantum fluctuations.
 - Effective Hamiltonian $H_{\sigma_{\chi^0}} \simeq \langle \hat{\Pi}^0 \rangle_{\sigma_{\chi^0}}$.

Spatial relational homogeneity: σ depends on a MCMF "clock" scalar field χ^0 ($\mathcal{D} = \text{minisuperspace} + \text{clock}$)

Collective Observables

Number, volume (determined e.g. by the mapping with LQG) and matter operators (notation: $(\cdot, \cdot) = \int d\chi^0 dg_a$):

$$\begin{split} \hat{N} &= (\hat{\varphi}^{\dagger}, \hat{\varphi}) & \hat{V} &= (\hat{\varphi}^{\dagger}, V[\hat{\varphi}]) \\ \hat{X}^{0} &= (\hat{\varphi}^{\dagger}, \chi^{0} \hat{\varphi}) & \hat{\Pi}^{0} &= -i(\hat{\varphi}^{\dagger}, \partial_{0} \hat{\varphi}) \end{split}$$

▶ Observables ↔ collective operators on Fock space.

Relationality

Averaged evolution wrt x⁰ is physical:

$$\langle \hat{\chi}^0 \rangle_{\sigma_{\chi^0}} \equiv \langle \hat{X}^0 \rangle_{\sigma_{\chi^0}} / \langle \hat{N} \rangle_{\sigma_{\chi^0}} \simeq x^0$$

- Emergent effective relational description:
 - Small clock quantum fluctuations.
 - Effective Hamiltonian $H_{\sigma_{\chi^0}} \simeq \langle \hat{\Pi}^0 \rangle_{\sigma_{\chi^0}}$.

$$\begin{array}{l} \langle \hat{O} \rangle_{\sigma_{\chi^{0}}} = O[\tilde{\sigma}]|_{\chi^{0} = x^{0}}: \\ \text{functionals of } \tilde{\sigma} \\ \text{localized at } x^{0}. \end{array} \begin{array}{l} \text{Wavefunction} \\ \text{isotropy} \end{array} \qquad \begin{array}{l} \langle \hat{V} \rangle_{\sigma_{\chi}^{0}} = \sum_{\upsilon}^{f} |\nabla_{\upsilon}|^{2} \langle x^{0} \rangle \\ \langle \hat{N} \rangle_{\sigma_{\chi}^{0}} = \sum_{\upsilon}^{f} |\sigma_{\upsilon}|^{2} \langle x^{0} \rangle \end{array} \begin{array}{l} \nu = j \in \mathbb{N}/2 \text{ (EPRL)}; \\ \nu = \rho \in \mathbb{R} \text{ (ext. BC)}. \end{array}$$

Oriti 2008.02774; LM, Oriti 2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Oriti, Pithis 2112.00091.

Mean-field approximation

- ▶ Mesoscopic regime: large *N* but negligible interactions.
- Derivative expansion of \mathcal{K} (due to peaking properties).
- Isotropy: $\tilde{\sigma}_{\upsilon} \equiv \rho_{\upsilon} e^{i\theta_{\upsilon}}$ fundamental variables.

 $\tilde{\sigma}_{\upsilon}^{\prime\prime}-2i\tilde{\pi}_{0}\tilde{\sigma}_{\upsilon}^{\prime}-E_{\upsilon}^{2}\tilde{\sigma}=0.$

LM, Oriti 2008.02774; LM, Oriti 2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Oriti, Pithis 2112.00091; ...

Mean-field approximation

- ▶ Mesoscopic regime: large N but negligible interactions.
- Derivative expansion of \mathcal{K} (due to peaking properties).

$$\tilde{\sigma}_{\upsilon}^{\prime\prime}-2i\tilde{\pi}_{0}\tilde{\sigma}_{\upsilon}^{\prime}-E_{\upsilon}^{2}\tilde{\sigma}=0.$$

• Isotropy: $\tilde{\sigma}_{\upsilon} \equiv \rho_{\upsilon} e^{i\theta_{\upsilon}}$ fundamental variables.

 $\frac{\text{Effective relational Freidmann dynamics}}{\left(\frac{V'}{3V}\right)^2 \simeq \left(\frac{2 \, \text{\pounds}_{\upsilon} \, V_{\upsilon} \rho_{\upsilon} \operatorname{sgn}(\rho'_{\upsilon}) \sqrt{\mathcal{E}_{\upsilon} - \mathcal{Q}_{\upsilon}^2 / \rho_{\upsilon}^2 + \mu_{\upsilon}^2 \rho_{\upsilon}^2}}{3 \, \text{\pounds}_{\upsilon} \, V_{\upsilon} \rho_{\upsilon}^2}\right)^2, \quad \frac{V''}{V} \simeq \frac{2 \, \text{\pounds}_{\upsilon} \, V_{\upsilon} \left[\mathcal{E}_{\upsilon} + 2\mu_{\upsilon}^2 \rho_{\upsilon}^2\right]}{\text{\pounds}_{\upsilon} \, V_{\upsilon} \rho_{\upsilon}^2}$

LM, Oriti 2008.02774; LM, Oriti 2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Oriti, Pithis 2112.00091; ...

Mean-field approximation

- ▶ Mesoscopic regime: large N but negligible interactions.
- Derivative expansion of \mathcal{K} (due to peaking properties).

$$\tilde{\sigma}_{\upsilon}^{\prime\prime}-2i\tilde{\pi}_{0}\tilde{\sigma}_{\upsilon}^{\prime}-E_{\upsilon}^{2}\tilde{\sigma}=0.$$

• Isotropy: $\tilde{\sigma}_{\upsilon} \equiv \rho_{\upsilon} e^{i\theta_{\upsilon}}$ fundamental variables.

 $\left(\frac{V'}{3V}\right)^{2} \simeq \left(\frac{2 \, \pounds_{\upsilon} \, V_{\upsilon} \rho_{\upsilon} \operatorname{sgn}(\rho_{\upsilon}') \sqrt{\mathcal{E}_{\upsilon} - Q_{\upsilon}^{2} / \rho_{\upsilon}^{2} + \mu_{\upsilon}^{2} \rho_{\upsilon}^{2}}}{3 \, \pounds_{\upsilon} \, V_{\upsilon} \rho_{\upsilon}^{2}}\right)^{2}, \quad \frac{V''}{V} \simeq \frac{2 \, \pounds_{\upsilon} \, V_{\upsilon} \left[\mathcal{E}_{\upsilon} + 2\mu_{\upsilon}^{2} \rho_{\upsilon}^{2}\right]}{\oint_{\upsilon} \, V_{\upsilon} \rho_{\upsilon}^{2}}$

Classical limit (large ρ_v s, late times)

If μ²_v is mildly dependent on v (or one v is dominating) and equal to 3πG

 $(V'/3V)^2 \simeq 4\pi G/3 \longrightarrow \text{flat FLRW}$

 Quantum fluctuations on clock and geometric variables are under control.

LM, Oriti 2008.02774; LM, Oriti 2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Oriti, Pithis 2112.00091; ...

Mean-field approximation

- ▶ Mesoscopic regime: large N but negligible interactions.
- Derivative expansion of \mathcal{K} (due to peaking properties).

$$\tilde{\sigma}_{\upsilon}^{\prime\prime}-2i\tilde{\pi}_{0}\tilde{\sigma}_{\upsilon}^{\prime}-E_{\upsilon}^{2}\tilde{\sigma}=0.$$

• Isotropy: $\tilde{\sigma}_{\upsilon} \equiv \rho_{\upsilon} e^{i\theta_{\upsilon}}$ fundamental variables.

Effective relational Freidmann dynamics

$$\left(\frac{V'}{3V}\right)^{2} \simeq \left(\frac{2 \oint_{\upsilon} V_{\upsilon} \rho_{\upsilon} \mathsf{sgn}(\rho_{\upsilon}') \sqrt{\mathcal{E}_{\upsilon} - Q_{\upsilon}^{2} / \rho_{\upsilon}^{2} + \mu_{\upsilon}^{2} \rho_{\upsilon}^{2}}}{3 \oint_{\upsilon} V_{\upsilon} \rho_{\upsilon}^{2}}\right)^{2}, \quad \frac{V''}{V} \simeq \frac{2 \oint_{\upsilon} V_{\upsilon} \left[\mathcal{E}_{\upsilon} + 2\mu_{\upsilon}^{2} \rho_{\upsilon}^{2}\right]}{\oint_{\upsilon} V_{\upsilon} \rho_{\upsilon}^{2}}$$

Classical limit (large ρ_v s, late times)

If μ²_v is mildly dependent on v (or one v is dominating) and equal to 3πG

 $(V'/3V)^2 \simeq 4\pi G/3 \longrightarrow \text{flat FLRW}$

 Quantum fluctuations on clock and geometric variables are under control.

Bounce

- A non-zero volume bounce happens for a large range of initial conditions (at least one Q_v ≠ 0 or one E_v < 0).</p>
- The average singularity resolution may still be spoiled by quantum effects on geometric and clock variables.

LM, Oriti 2008.02774; LM, Oriti 2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Oriti, Pithis 2112.00091; ...

(T)GFT interactions and matter

Running couplings and effective potentials

- Adding a scalar field φ with potential U_φ requires (T)GFT interactions, as V_γ = V_γ({g}, U_φ).
- Interactions studied perturbatively at late times (mesoscopic regime) and in single j approx.

Ladstätter, LM, Oriti (to appear); Oriti, Pang 2105.03751.
(T)GFT interactions and matter

►

Running couplings and effective potentials

• Adding a scalar field ϕ with potential U_{ϕ} requires (T)GFT interactions, as $\mathcal{V}_{\gamma} = \mathcal{V}_{\gamma}(\{g\}, U_{\phi})$.

Interactions studied perturbatively at late times (mesoscopic regime) and in single j approx.

Modulus interactions

notation:
$$(\cdot, \cdot) = \int d^4 \chi d\phi dg_a$$

 $\operatorname{Fr}_{\mathcal{V}_{\gamma_l}}^{(m)} [\varphi, \bar{\varphi}] \sim (\mathcal{V}_{\gamma_l}^{(m)}, \bar{\varphi}^{(l+1)/2} \varphi^{(l+1)/2})$

 \checkmark GR matching possible only if l = 5, and if

Macroscopic constants (including G) run with relational time!

Ladstätter, LM, Oriti (to appear); Oriti, Pang 2105.03751.

(T)GFT interactions and matter

Running couplings and effective potentials

Adding a scalar field φ with potential U_φ requires (T)GFT interactions, as V_γ = V_γ({g}, U_φ).
 Interactions studied perturbatively at late times (mesoscopic regime) and in single j approx.

Modulus interactions

notation:
$$(\cdot, \cdot) = \int d^4 \chi d\phi dg_{\theta}$$

 $\operatorname{Tr}_{\mathcal{V}_{\gamma_l}}^{(m)} [\varphi, \bar{\varphi}] \sim (\mathcal{V}_{\gamma_l}^{(m)}, \bar{\varphi}^{(l+1)/2} \varphi^{(l+1)/2})$

- \checkmark GR matching possible only if l = 5, and if
- Macroscopic constants (including G) run with relational time!

Phase interactions

$$\begin{split} \text{notation:} & (\cdot, \cdot) = \int \mathrm{d}^4 \chi \mathrm{d} \phi \mathrm{d} g_{\text{a}} \\ & \mathsf{Tr}_{\mathcal{V}\gamma_l}^{(p)} = \big(\mathcal{V}_{\gamma_l}^{(p)}, \varphi^{l+1} \big) \end{split}$$

- \checkmark GR matching possible only if l = 5, but
- Effective scalar field potential corrected by trigonometric factors.

Ladstätter, LM, Oriti (to appear); Oriti, Pang 2105.03751.

(T)GFT interactions and matter

Running couplings and effective potentials

• Adding a scalar field ϕ with potential U_{ϕ} requires (T)GFT interactions, as $\mathcal{V}_{\gamma} = \mathcal{V}_{\gamma}(\{g\}, U_{\phi})$. • Interactions studied perturbatively at late times (mesoscopic regime) and in single *j* approx.

Modulus interactions

- \checkmark GR matching possible only if l = 5, and if
- Macroscopic constants (including G) run with relational time!

Phase interactions

- \checkmark GR matching possible only if l = 5, but
- Effective scalar field potential corrected by trigonometric factors.

Phantom dark energy

Emergent matter components

- Matter can also emerge as a result of pure QG effects!
- Consider modulus interactions at very late times, but include a subdominant spin j':

$$w = 3 - 2(VV'')/(V')^2 \simeq -1 - b/V$$
, $b > 0$.

· Universe effectively dominated by (non-pathologic) emergent phantom dark energy.

Ladstätter, LM, Oriti (to appear); Oriti, Pang 2105.03751.

Luca Marchetti

Inhomogeneous sector

Gielen, Oriti, 1709.01095; Gerhart, Oriti, Wilson-Ewing 1805.03099.

► Fock quantize the emergent perturbation dynamics.

Gielen, Oriti, 1709.01095; Gerhart, Oriti, Wilson-Ewing 1805.03099.

- Fock quantize the emergent perturbation dynamics.
- Extract quantum properties directly from GFT.

Gielen, Oriti, 1709.01095; Gerhart, Oriti, Wilson-Ewing 1805.03099.

- Fock quantize the emergent perturbation dynamics.
 Extract quantum properties directly from GFT.
 - First step in GFT using second moment $\delta^2 \hat{V}$.
 - What about higher moments? Is V really relational? Only a background result?

Gielen, Oriti, 1709.01095; Gerhart, Oriti, Wilson-Ewing 1805.03099.

- Fock quantize the emergent perturbation dynamics.
 Extract quantum properties directly from GFT.
 - First step in GFT using second moment $\delta^2 \hat{V}$.
 - What about higher moments? Is V really relational? Only a background result?

Gielen, Oriti, 1709.01095; Gerhart, Oriti, Wilson-Ewing 1805.03099.

Developments in GFT Cosmology

► Goal: vector, tensor, scalar modes at all scales.

- Fock quantize the emergent perturbation dynamics.
 Extract quantum properties directly from GFT.
 - First step in GFT using second moment $\delta^2 \hat{V}$.
 - What about higher moments? Is V really relational? Only a background result?
- Goal: vector, tensor, scalar modes at all scales.
 First step in GFT for scalar perturbations in the separate universe framework.
 - Can we extend to all scales? Can we use a proper physical reference frame?

Gielen, Oriti, 1709.01095; Gerhart, Oriti, Wilson-Ewing 1805.03099.

- Fock quantize the emergent perturbation dynamics.Extract quantum properties directly from GFT.
 - First step in GFT using second moment $\delta^2 \hat{V}$.
 - What about higher moments? Is V really relational? Only a background result?
- Goal: vector, tensor, scalar modes at all scales.
 First step in GFT for scalar perturbations in the separate universe framework.
 - Can we extend to all scales? Can we use a proper physical reference frame?

Gielen, Oriti, 1709.01095; Gerhart, Oriti, Wilson-Ewing 1805.03099.

Simplest (slightly) relationally inhomogeneous system

Classical

- ► 4 MCMF reference fields (\(\chi^0\), \(\chi^i\)), with Lorentz/Euclidean invariant \(S_\chi\$ in field space.
- 1 MCMF matter field φ dominating the e.m. budget and relationally inhomog. wrt. χⁱ.

Classical

- 4 MCMF reference fields (χ⁰, χⁱ), with Lorentz/Euclidean invariant S_χ in field space.
- 1 MCMF matter field φ dominating the e.m. budget and relationally inhomog. wrt. χⁱ.

Quantum

- ► GFT field: φ(g_a, χ^μ, φ), depends on 5 discretized scalar variables.
- EPRL-like model with S_{GFT} respecting the classical matter symmetries.

Classical

- 4 MCMF reference fields (χ⁰, χⁱ), with Lorentz/Euclidean invariant S_χ in field space.
- 1 MCMF matter field φ dominating the e.m. budget and relationally inhomog. wrt. χⁱ.

Observables

Aat. Vol. Frame

$$\begin{array}{l} \text{notation:} (\cdot, \cdot) = \int \mathrm{d}^4 \chi \mathrm{d}\phi \mathrm{d}g_a \\ \\ \hat{X}^{\mu} = (\hat{\varphi}^{\dagger}, \chi^{\mu} \hat{\varphi}) \quad \hat{\Pi}^{\mu} = -i(\hat{\varphi}^{\dagger}, \partial_{\mu} \hat{\varphi}) \\ \\ \text{Only isotropic info:} \quad \hat{V} = (\hat{\varphi}^{\dagger}, V[\hat{\varphi}]) \end{array}$$

 $\hat{\Phi} = (\hat{\varphi}^{\dagger}, \phi \hat{\varphi}) \qquad \hat{\Pi}_{\phi} = -i(\hat{\varphi}^{\dagger}, \partial_{\phi} \hat{\varphi})$

Quantum

- ► GFT field: φ(g_a, χ^μ, φ), depends on 5 discretized scalar variables.
- EPRL-like model with S_{GFT} respecting the classical matter symmetries.

Classical

- 4 MCMF reference fields (χ⁰, χⁱ), with Lorentz/Euclidean invariant S_χ in field space.
- 1 MCMF matter field φ dominating the e.m. budget and relationally inhomog. wrt. χⁱ.

Observables

notation: $(\cdot, \cdot) = \int d^4 \chi d\phi dg_a$

 $\hat{X}^{\mu} = (\hat{\varphi}^{\dagger}, \chi^{\mu}\hat{\varphi}) \quad \hat{\Pi}^{\mu} = -i(\hat{\varphi}^{\dagger}, \partial_{\mu}\hat{\varphi})$

Only isotropic info: $\hat{V} = (\hat{\varphi}^{\dagger}, V[\hat{\varphi}])$

 $\hat{\Phi} = (\hat{\varphi}^{\dagger}, \phi \hat{\varphi})$ $\hat{\Pi}_{\phi} = -i(\hat{\varphi}^{\dagger}, \partial_{\phi} \hat{\varphi})$

Quantum

- ► GFT field: φ(g_a, χ^μ, φ), depends on 5 discretized scalar variables.
- EPRL-like model with S_{GFT} respecting the classical matter symmetries.

States

- CPSs around $\chi^{\mu} = x^{\mu}$, with
 - η: Isotropic peaking on rods;
 - *σ*: Isotropic distribution of geometric data.
- Small relational $\tilde{\sigma}$ -inhomogeneities ($\tilde{\sigma} = \rho e^{i\theta}$):

 $\rho = \bar{\rho}(\cdot, \chi^{0}) + \delta\rho(\cdot, \chi^{\mu}), \ \theta = \bar{\theta}(\cdot, \chi^{0}) + \delta\theta(\cdot, \chi^{\mu}).$

LM, Oriti 2112.12677; Gerhart, Oriti, Wilson-Ewing 1805.03099.

Luca Marchetti

Aat. Vol. Frame

Super-horizon scalar perturbations

Bertschinger 0604485; Fischer, LM, Oriti (to appear); LM, Oriti 2112.12677; Gielen, Mickel 2211.04500.

Super-horizon scalar perturbations

Bertschinger 0604485; Fischer, LM, Oriti (to appear); LM, Oriti 2112.12677; Gielen, Mickel 2211.04500.

Super-horizon scalar perturbations

Observables	States
notation: $(\cdot, \cdot) = \int d^4 \chi d\phi dg_a$ $\hat{X}^{\mu} = (\hat{\varphi}^{\dagger}, \chi^{\mu} \hat{\varphi}) \hat{\Pi}^{\mu} = -i(\hat{\varphi}^{\dagger}, \partial_{\mu} \hat{\varphi})$ Only isotropic info: $\hat{V} = (\hat{\varphi}^{\dagger}, V[\hat{\varphi}])$ $\hat{\Phi} = (\hat{\varphi}^{\dagger}, \phi \hat{\varphi}) \qquad \hat{\Pi}_{\phi} = -i(\hat{\varphi}^{\dagger}, \partial_{\phi} \hat{\varphi})$	 CPSs around χ^μ = x^μ, with η: Isotropic peaking on rods; σ̃: Isotropic distribution of geometric data. Small relational σ̃-inhomogeneities (σ̃ = ρe^{iθ}): ρ = ρ̄(·, χ⁰) + δρ(·, χ^μ), θ = θ̄(·, χ⁰) + δθ(·, χ^μ).
	Super-horizon volume and matter dynamics
 Averaged q.e.o.m. (no interactions) → co Restrict to super-horizon modes but study a 	bupled eqs. for (ρ, θ) . also early times. $\begin{array}{c} \text{single} \\ \text{spin} \end{array} \begin{array}{c} \text{Dynamic equations} \\ \text{for } \langle \hat{V} \rangle_{\sigma}, \langle \hat{\Phi} \rangle_{\sigma} \end{array}$
Modified gravity	Porturbing background dynamics

Modified gravity

- Dynamics of super-horizon scalar perturbations can be obtained generically for any MG theory.
- No matching at early times with effective GFT volume dynamics.

Perturbing background dynamics

- Study super-horizon scalar perturbations by perturbing background QG volume eq.
- No matching at early times with full effective GFT volume dynamics

Bertschinger 0604485; Fischer, LM, Oriti (to appear); LM, Oriti 2112.12677; Gielen, Mickel 2211.04500.

Luca Marchetti

Scalar perturbations at all scales

Causal frame fields coupling

Causal properties of frame fields can be easily implemented in the complete extended BC model.

• $\varphi_{\alpha} \equiv \varphi(g_a, X_{\alpha}, \chi^{\mu}, \phi), g \in SL(2, \mathbb{C}), X_{\alpha}$ tetrahedron normal defining its causal character, $\alpha = \pm$.

Jercher, LM, Pithis (to appear); Jercher, Oriti, Pithis 2206.15442.

Causal frame fields coupling

Causal properties of frame fields can be easily implemented in the complete extended BC model.

• $\varphi_{\alpha} \equiv \varphi(g_{a}, X_{\alpha}, \chi^{\mu}, \phi), g \in SL(2, \mathbb{C}), X_{\alpha}$ tetrahedron normal defining its causal character, $\alpha = \pm$.

Two-sector Fock space

- Generic operators on $\mathcal{F} = \mathcal{F}_+ \otimes \mathcal{F}_-$ correlate spacelike and timelike tetrahedra.
- ▶ Volume operator is an exception: $\hat{V} = \hat{V}_+ \otimes \mathbb{I}_-$.

Jercher, LM, Pithis (to appear); Jercher, Oriti, Pithis 2206.15442.

Causal frame fields coupling

Causal properties of frame fields can be easily implemented in the complete extended BC model.

• $\varphi_{\alpha} \equiv \varphi(g_{a}, X_{\alpha}, \chi^{\mu}, \phi), g \in SL(2, \mathbb{C}), X_{\alpha}$ tetrahedron normal defining its causal character, $\alpha = \pm$.

Two-sector Fock space

- ▶ Generic operators on *F* = *F*₊ ⊗ *F*₋ correlate spacelike and timelike tetrahedra.
- ▶ Volume operator is an exception: $\hat{V} = \hat{V}_+ \otimes \mathbb{I}_-$.

Frame coupling

$$\begin{split} \mathcal{K}_{+} &= \mathcal{K}_{+}(\cdot, (\chi^{0}-\chi^{0\prime})^{2})\,,\\ \mathcal{K}_{-} &= \mathcal{K}_{-}(\cdot, |\boldsymbol{\chi}-\boldsymbol{\chi}'|^{2})\,. \end{split}$$

Jercher, LM, Pithis (to appear); Jercher, Oriti, Pithis 2206.15442.

Collective states

Causal frame fields coupling

Causal properties of frame fields can be easily implemented in the complete extended BC model. • $\varphi_{\alpha} \equiv \varphi(g_a, X_{\alpha}, \chi^{\mu}, \phi), g \in SL(2, \mathbb{C}), X_{\alpha}$ tetrahedron normal defining its causal character, $\alpha = \pm$.

Two-sector Fock space

- ▶ Generic operators on *F* = *F*₊ ⊗ *F*₋ correlate spacelike and timelike tetrahedra.
- Volume operator is an exception: $\hat{V} = \hat{V}_+ \otimes \mathbb{I}_-$.

Frame coupling

$$\begin{split} \mathcal{K}_{+} &= \mathcal{K}_{+}(\cdot, (\chi^{0}-\chi^{0\prime})^{2})\,,\\ \mathcal{K}_{-} &= \mathcal{K}_{-}(\cdot, |\boldsymbol{\chi}-\boldsymbol{\chi}'|^{2})\,. \end{split}$$

Including two-body correlations

$$|\psi
angle = \mathcal{N}_{\psi} \exp(\hat{\sigma} \otimes \mathbb{I}_{-} + \mathbb{I}_{+} \otimes \hat{\tau} + \widehat{\delta \Phi} \otimes \mathbb{I}_{-} + \widehat{\delta \Psi} + \mathbb{I}_{+} \otimes \widehat{\delta \Xi}) |0
angle$$

Jercher, LM, Pithis (to appear); Jercher, Oriti, Pithis 2206.15442.

Collective states

Causal frame fields coupling

Causal properties of frame fields can be easily implemented in the complete extended BC model. • $\varphi_{\alpha} \equiv \varphi(g_{a}, X_{\alpha}, \chi^{\mu}, \phi), g \in SL(2, \mathbb{C}), X_{\alpha}$ tetrahedron normal defining its causal character, $\alpha = \pm$.

Two-sector Fock space

- ▶ Generic operators on *F* = *F*₊ ⊗ *F*₋ correlate spacelike and timelike tetrahedra.
- Volume operator is an exception: $\hat{V} = \hat{V}_+ \otimes \mathbb{I}_-$.

Frame coupling

$$\begin{split} \mathcal{K}_{+} &= \mathcal{K}_{+}(\cdot, (\chi^{0}-\chi^{0\prime})^{2})\,,\\ \mathcal{K}_{-} &= \mathcal{K}_{-}(\cdot, |\boldsymbol{\chi}-\boldsymbol{\chi}'|^{2})\,. \end{split}$$

Including two-body correlations

$$|\psi\rangle = \mathcal{N}_{\psi} \exp(\hat{\sigma} \otimes \mathbb{I}_{-} + \mathbb{I}_{+} \otimes \widehat{\tau} + \widehat{\delta \Phi} \otimes \mathbb{I}_{-} + \widehat{\delta \Psi} + \mathbb{I}_{+} \otimes \widehat{\delta \Xi}) |0\rangle$$

Background

- $\hat{\sigma} = (\sigma, \hat{\varphi}^{\dagger}_{+})$: spacelike condensate.
- $\hat{\tau} = (\tau, \hat{\varphi}_{-}^{\dagger})$: timelike condensate.
- τ, σ peaked; τ̃, σ̃ homogeneous.

Jercher, LM, Pithis (to appear); Jercher, Oriti, Pithis 2206.15442.

Collective states

Causal frame fields coupling

Causal properties of frame fields can be easily implemented in the complete extended BC model. • $\varphi_{\alpha} \equiv \varphi(g_a, X_{\alpha}, \chi^{\mu}, \phi), g \in SL(2, \mathbb{C}), X_{\alpha}$ tetrahedron normal defining its causal character, $\alpha = \pm$.

Two-sector Fock space

- ▶ Generic operators on *F* = *F*₊ ⊗ *F*₋ correlate spacelike and timelike tetrahedra.
- ▶ Volume operator is an exception: $\hat{V} = \hat{V}_+ \otimes \mathbb{I}_-$.

Frame coupling

$$\begin{split} \mathcal{K}_{+} &= \mathcal{K}_{+}(\cdot, (\chi^{0}-\chi^{0\prime})^{2})\,,\\ \mathcal{K}_{-} &= \mathcal{K}_{-}(\cdot, |\boldsymbol{\chi}-\boldsymbol{\chi}'|^{2})\,. \end{split}$$

Including two-body correlations

$$|\psi\rangle = \mathcal{N}_{\psi} \exp(\hat{\sigma} \otimes \mathbb{I}_{-} + \mathbb{I}_{+} \otimes \widehat{\tau} + \widehat{\delta \Phi} \otimes \mathbb{I}_{-} + \widehat{\delta \Psi} + \mathbb{I}_{+} \otimes \widehat{\delta \Xi}) |0\rangle$$

Background

•
$$\hat{\sigma} = (\sigma, \hat{\varphi}_+^{\dagger})$$
: spacelike condensate.

- $\hat{\tau} = (\tau, \hat{\varphi}^{\dagger}_{-})$: timelike condensate.
- τ , σ peaked; $\tilde{\tau}$, $\tilde{\sigma}$ homogeneous.

Perturbations

- $\bullet \quad \widehat{\delta\Phi} = (\delta\Phi, \hat{\varphi}_{+}^{\dagger}\hat{\varphi}_{+}^{\dagger}), \ \widehat{\delta\Psi} = (\delta\Psi, \hat{\varphi}_{+}^{\dagger}\hat{\varphi}_{-}^{\dagger}), \ \widehat{\delta\Xi} = (\delta\Xi, \hat{\varphi}_{-}^{\dagger}\hat{\varphi}_{-}^{\dagger}).$
- $\delta \Phi$, $\delta \Psi$ and $\delta \Xi$ small and relationally inhomogeneous.
- Perturbations = nearest neighbour 2-body correlations.

Jercher, LM, Pithis (to appear); Jercher, Oriti, Pithis 2206.15442.

Luca Marchetti

Scalar perturbations

Mean-field equations (negligible interactions):

$$\left<\delta S/\delta\hat{\varphi}_{+}^{\dagger}\right>_{\psi} = 0 = \left<\delta S/\delta\hat{\varphi}_{-}^{\dagger}\right>_{\psi}$$

- 2 coupled eqs. for 3 variables: (δΦ, δΨ, δΞ)!
- Late times and single (spacelike) rep. label.

Jercher, LM, Pithis (to appear); Jercher, Oriti, Pithis 2206.15442

Scalar perturbations

Mean-field equations (negligible interactions):

$$\left< \delta S / \delta \hat{\varphi}_{+}^{\dagger} \right>_{\psi} = \mathbf{0} = \left< \delta S / \delta \hat{\varphi}_{-}^{\dagger} \right>_{\psi}$$

- 2 coupled eqs. for 3 variables: (δΦ, δΨ, δΞ)!
- Late times and single (spacelike) rep. label.

 $\delta V_{\psi} \propto \operatorname{Re}(\delta \Psi, \tilde{\sigma} \tilde{\tau}) + \operatorname{Re}(\delta \Phi, \tilde{\sigma}^2)$

- Late time GR matching fixes:
 - Parameters determining τ dynamics;
 - Dynamical freedom (e.g. in $\delta \Phi$).

Jercher, LM, Pithis (to appear); Jercher, Oriti, Pithis 2206.15442.

Scalar perturbations

Mean-field equations (negligible interactions):

$$\langle \delta S / \delta \hat{\varphi}_{+}^{\dagger} \rangle_{\psi} = 0 = \langle \delta S / \delta \hat{\varphi}_{-}^{\dagger} \rangle_{\psi}$$

- 2 coupled eqs. for 3 variables: (δΦ, δΨ, δΞ)!
- Late times and single (spacelike) rep. label.

 $\delta V_{\psi} \propto \operatorname{Re}(\delta \Psi, \tilde{\sigma} \tilde{\tau}) + \operatorname{Re}(\delta \Phi, \tilde{\sigma}^2)$

- Late time GR matching fixes:
 - Parameters determining τ dynamics;
 - Dynamical freedom (e.g. in $\delta \Phi$).

Late times volume perturbations dynamics matches GR at all scales!

Jercher, LM, Pithis (to appear); Jercher, Oriti, Pithis 2206.15442.

- Singularity resolution into quantum bounce.
- Universal bounce (for MCMF scalar field).
- Impact of quantum effects on the bounce (and interplay with relationality).
- Acceleration produced by the bounce not long enough to sustain inflation.

LM, Oriti 2008.02774 - 2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Oriti, Pithis 2112.00091; de Cesare, Pithis, Sakellariadou 1606.00352; Ladstätter, LM, Oriti (to appear); Oriti, Pang 2105.03751; Gielen, Polaczek 1912.06143 ; ...

Luca Marchetti

- Singularity resolution into quantum bounce.
- Universal bounce (for MCMF scalar field).
- Impact of quantum effects on the bounce (and interplay with relationality).
- Acceleration produced by the bounce not long enough to sustain inflation.

- Small interactions: classical regime identified (small quantum fluctuations and GR matching).
- ✓ Universal classical limit (for MCMF scalar field).
- Inclusion of scalar field with potential: emergent running couplings.
- Exotic matter can emerge from GFT interactions.

LM, Oriti 2008.02774 - 2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Oriti, Pithis 2112.00091; de Cesare, Pithis, Sakellariadou 1606.00352; Ladstätter, LM, Oriti (to appear); Oriti, Pang 2105.03751; Gielen, Polaczek 1912.06143 ; ...

Luca Marchetti

- Extend the analysis to more generic fluids.
- Universal bounce also for generic fluids?
- In particular, would trigonometric modifications to a scalar field potential appear at early times?
- Mhat kind of inflationary physics is generated?

- Extend the analysis to more generic fluids.
- Universal classical limit also for generic fluids?
- Insights on the renormalization properties of GFTs from emergent running couplings?
- Can we rely on mean-field approx. at late times?

Results

- Super-horizon analysis in EPRL with MCMF scalar fields:
 - Scalar pert. dynamics differs from any MG model.
 - Full QG scalar pert. dynamics differs from perturbed background dynamics.

LM, Oriti 2112.12677; Fischer, LM, Oriti (to appear); Jercher, LM, Pithis (to appear); Gerhart, Oriti, Wilson-Ewing 1805.03099.

- Full QG scalar pert. dynamics differs from perturbed background dynamics.
- \checkmark Scalar pert. \longleftrightarrow guantum correlations!
- ✓ Late-times scalar pert. dynamics matches GR!

LM, Oriti 2112.12677; Fischer, LM, Oriti (to appear); Jercher, LM, Pithis (to appear); Gerhart, Oriti, Wilson-Ewing 1805.03099.

Luca Marchetti

Developments in GFT Cosmology

Perspectives

- ▲ Different fundamental d.o.f. → different perturbation dynamics?
- ▲ Scalar field perturbations? EFT description?
- Are the results universal? Analysis in BC!
- Generalization to physically interesting fluids.
- Extension to VT modes: more observables!
- Initial conditions and power spectra?
 - Fock quantization of early-times dynamics.
 - Can we derive it from full QG?

Perspectives

- Physical interpretation and consequences of matching conditions?
- Scalar field perturbations? EFT description?
- Are the results universal? Extension to EPRL!
- Generalization to physically interesting fluids.
- Extension to VT modes: more observables!
- How do quantum perturbations classicalize?
- How do GFT interactions change the picture?

Fischer, LM, Oriti (to appear); Jercher, LM, Pithis (to appear); Dekhil, Liberati, Oriti (to appear); Calcinari, Gielen 2210.03149.

Luca Marchetti

Developments in GFT Cosmology

Backup

Specifics of GFT models

$$\begin{split} S &= \sum_{\{j_{a}\}, \{j_{a}'\}, \{m_{a}\}, \{m_{a}'\}, \{n_{a}'\}, (\mu_{a}'), \iota, \iota'} \bar{\varphi}_{\{m_{a}\}}^{\{j_{a}\}, \iota'} \mathcal{K}_{\{m_{a}\}}^{\{j_{a}\}, \{j_{a}'\}, \iota'} + V_{5}, \\ V_{5} &= \frac{1}{5} \sum_{\{j_{a}\}, \{m_{a}\}, \{\iota_{b}\}} \varphi_{m_{1}m_{2}m_{3}m_{4}}^{(j_{1}j_{3})j_{1}j_{1}} \mathcal{K}_{-m_{4}m_{5}m_{7}}^{(j_{1}j_{3})j_{1}j_{3}} \mathcal{K}_{-m_{7}-m_{3}m_{8}m_{9}}^{(j_{2}j_{5})j_{1}0\iota_{4}} \mathcal{K}_{-m_{1}0-m_{8}-m_{5}-m_{1}} \\ &\times \prod_{c=1}^{10} (-1)^{j_{c}-m_{c}} \mathcal{V}_{5}(j_{1}, \ldots, j_{10}; \iota_{1}, \ldots, \iota_{5}), & a = 1, \ldots, 4 \\ &b = 1, \ldots, 5 \\ \mathcal{V}_{5}(\{j_{c}\}, \{\iota_{b}\}) &= \sum_{\{n_{A}\}} \int \left[\prod_{A} d\rho_{A}(n_{A}^{2} + \rho_{A}^{2}) \right] \left[\bigotimes_{b} f_{\{n_{A}\}\{\rho_{A}\}}^{\iota_{b}}(\{j_{a}\}) \right] \{15j\}_{\mathrm{SL}(2,\mathbb{C})}, \end{split}$$

where f maps $SL(2, \mathbb{C})$ data into SU(2) ones by imposing the constraints n = 2j and $\rho = 2j\gamma$.

$$\begin{split} S &= \left[\prod_{i} \int d\rho_{i} \, 4\rho_{i}^{2} \sum_{j_{i}m_{i}}\right] \bar{\varphi}_{j_{i}m_{i}}^{\rho_{i}} \varphi_{j_{i}m_{i}}^{\rho_{i}} + \frac{\lambda}{5} \left[\prod_{a=1}^{10} \int d\rho_{a} \, 4\rho_{a}^{2} \sum_{j_{a}m_{a}}\right] \left[\prod_{a=1}^{10} (-1)^{-j_{a}-m_{a}}\right] \{10\rho\}_{BC} \right] \\ &\times \varphi_{j_{1}m_{1}j_{2}m_{2}j_{3}m_{3}m_{4}m_{4}}^{\rho_{1}\rho_{2}\rho_{5}\rho_{6}\rho_{7}} \varphi_{j_{7}-m_{7}j_{3}-m_{3}j_{8}m_{8}j_{9}m_{9}} \\ &\times \varphi_{j_{9}-m_{9}j_{6}-m_{6}j_{2}-m_{2}j_{10}m_{10}}^{\rho_{10}\rho_{10}\rho_{5}\rho_{11}} \varphi_{j_{10}-m_{10}j_{8}-m_{8}j_{5}-m_{5}j_{1}-m_{1}} + c.c. \end{split}$$

Engle, Livine, Pereira, Rovelli 0711.0146; Gielen, Oriti, Sindoni 1311.1238; Jercher, Oriti, Pithis 2112.00091.

Luca Marchetti

EPRL model

Extended BC model

Developments in GFT Cosmology