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Group Field Theory and spinfoam models
D
efi

n
it
io
n

Group Field Theories: theories of

a field φ : G d → C defined on

d copies of a group manifold G .

d is the dimension of the “spacetime to be”

(d = 4) and G is the local gauge group of gravity,

G = SL(2,C) or, in some cases, G = SU(2).

A
ct
io
n

S[φ, φ̄] =

∫
dgaφ̄(ga)K[φ](ga) +

∑
γ

λγ

nγ
TrVγ [φ] + c.c. .

▶ Interaction terms are combinatorially non-local.

▶ Field arguments convoluted pairwise following the combinatorial

pattern dictated by the graph γ:

TrVγ [φ] =

∫ nγ∏
i=1

dga
∏

(a,i ;b,j)

Vγ(g (i)
a , g

(j)
b )

nγ∏
i=1

φ(g (i)
a ) .

g′4g′3g′2g′1

g1 g2 g3 g4

K y 7
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g′6

g′2

g10

g′10
g′8

g′5
g′1
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g3
g4

g′4
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g7

g′7
g′3

g′8
g9

V5

P
ar
ti
ti
o
n
fu
n
ct
io
n

Z [φ, φ̄] =
∑
Γ

wΓ({λγ})AΓ

= complete spinfoam model.

▶ Γ = stranded diagrams dual to d-dimensional cellular complexes of arbitrary topology.

▶ Amplitudes AΓ = sums over group theoretic data associated to the cellular complex.

▶ K and Vγ chosen to match the desired spinfoam model.

Oriti 1110.5606; Reisenberger, Rovelli 0002083; De Pietri, Petronio 0004045; Gurau 1006.0714; Baratin, Oriti 1002.4723; Finocchiaro, Oriti 1812.03550.
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Group Field Theory and Loop Quantum Gravity
F
u
n
d
a
m
en

ta
l
q
u
a
n
ta

(ciaoOne-particle Hilbert space(

The one-particle Hilbert space is Htetra ⊂ ⊗4
a=1H∆a (subset defined by the imposition of constraints)

Lie algebra (metric)

H∆a = L2(g)

Lie group (connection)

H∆a = L2(G)

Representation space

H∆a =
⊕

Ja
HJa

(ciaoConstraints(

Geometricity constraints (appropriately encoded in K and Vγ) allow for a

d − 1-simplicial interpretation of the fundamental quanta:

Closure Simplicity∑
a Ba = 0

(faces of the tetrahedron close).

▶ X · (B − γ ⋆ B)a = 0 (EPRL);

▶ X · Ba = 0 (BC).
BgB4Bg

B1

BgB2Bg

B3

•

yL
Q
G
y

▶ Impose simplicity and reduce to G = SU(2).

▶ Impose closure (gauge invariance).

Htetra =
⊕

j⃗ Inv
[⊗4

a=1Hja

]
= open spin-network vertex space

yNon-comm.y

FT

Peter-Weyl

Theorem

Finocchiaro, Oriti 1812.03550; Baez, Barrett 9903060; Baratin, Oriti 1002.4723; Gielen, Oriti 1004.5371; Oriti 1310.7786.
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The Group Field Theory Fock space

Tetrahedron wavefunction

φ(g1, . . . , g4)

(subject to constraints)

GFT field operator

φ̂(g1, . . . , g4)

(subject to constraints)

G
F
T

F
o
ck

sp
a
ce FGFT =

∞⊕
V=0

sym
[
H(1)

tetra ⊗H
(2)
tetra ⊗ . . .H

(V )
tetra

]
▶ FGFT generated by action of φ̂†(ga) on |0⟩, with [φ̂(ga), φ̂

†(g ′
a )] = IG (ga, g ′

a ).

▶ HΓ ⊂ FGFT, HΓ space of states associated to connected simplicial complexes Γ.

▶ Generic states do not correspond to connected simplicial lattices nor classical simplicial geometries.

▶ Similar to HLQG but also different: no continuum intuition, orthogonality wrt nodes, not graphs.

O
p
er
a
to
rs Volume operator V̂ =

∫
dg (1)

a dg (2)
a V (g (1)

a , g (2)
a )φ̂†(g (1)

a )φ̂(g (2)
a ) =

∑
ja,ma,ι

Vja,ιφ̂
†
ja,ma,ι

φ̂ja,ma,ι.

▶ Generic second quantization prescription to build a m + n-body operator: sandwich matrix

elements between spin-network states between m powers of φ̂† and n powers of φ̂.

Many-body

Theory

Oriti 1310.7786; Oriti 1408.7112; Sahlman, Sherif 2302.03612.
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Group Field Theory and matter: scalar fields

Group Field Theories: theories of a field
φ : Gd → C defined on the product Gd .

d is the dimension of the “spacetime to be” (d = 4)

and G is the local gauge group of gravity,

G = SL(2,C) or, in some cases, G = SU(2).

ciao

ciao Kinematicsy

Quanta are d − 1-simplices decorated with quantum geometric and scalar data:

▶ Geometricity constraints imposed analogously as before.

▶ Scalar field discretized on each d-simplex: each

d − 1-simplex composing it carries values χ ∈ Rdl .

ciao Dynamics

SGFT obtained by comparing ZGFT with simplicial gravity + scalar fields path integral.

▶ Geometric data enter the action in a non-local and

combinatorial fashion.

▶ Scalar field data are local in interactions.

▶ For minimally coupled, free, massless scalars:

K(ga, gb ;χα, χα′) = K(ga, gb ; (χα − χα′)2)

V5(g (1)
a , . . . , g (5)

a ,χ) = V5(g (1)
a , . . . , g (5)

a )

Htetra =

Bgj4Bg

j1

Bgj2Bg

j3
•χ
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The main ingredients
yC
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sy (ciaoGFT condensates

▶ From the GFT perspective, continuum geometries are associated to large number of quanta.

▶ The simplest states that can accommodate infinite number of quanta are condensate states:

|σ⟩ = Nσ exp

[∫
d
dlχ

∫
dga σ(ga, χ

α)φ̂†(ga, χ
α)

]
|0⟩ .

E
ff
ec
ti
ve

d
yn

a
m
ic
s (ciaoMean-field approximation

▶ When interactions are small (certainly satisfied in an appropriate regime) the dynamics of σ is:〈
δS[φ̂, φ̂†]

δφ̂(gI , xα)

〉
σ

=

∫
dha

∫
dχK(ga, ha, (xα − χα)2)σ(ha, χα) + λ

δV [φ, φ∗]

δφ∗(ga, xα)

∣∣∣∣
φ=σ

= 0 .

▶ Non-perturbative: equivalent to a mean-field (saddle-point) approximation of Z .

R
el
a
ti
o
n
a
lit
y

(ciaoCondensate Peaked States(

▶ Constructing relational observables on FGFT is difficult (QFT with no continuum intuition).

▶ Relational localization implemented at an effective level on observable averages.

▶ If χµ constitute a reference frame, this can be achieved by assuming

σ = (fixed peaking function η)× (dynamically determined reduced wavefunction σ̃)
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Macroscopic cosmological variables and effective relationality

Spatial relational homogeneity:

σ depends on a MCMF “clock” scalar field χ0

(D = minisuperspace + clock)

Collective Observablesp

Number, volume (determined e.g. by the mapping with

LQG) and matter operators (notation: (·, ·) =

∫
dχ

0
dga):

N̂ = (φ̂†
, φ̂) V̂ = (φ̂†

,V [φ̂])

X̂ 0 =
(
φ̂

†
, χ

0
φ̂
)

Π̂
0
= −i(φ̂†

, ∂0φ̂)

▶ Observables ↔ collective operators on Fock space.

Relationality

▶ Averaged evolution wrt x0 is physical:

⟨χ̂0⟩σx0
≡ ⟨X̂ 0⟩σx0

/ ⟨N̂⟩σx0
≃ x0

▶ Emergent effective relational description:

• Small clock quantum fluctuations.

• Effective Hamiltonian Hσx0 ≃⟨Π̂0⟩σx0
.

▶ ⟨Ô⟩σx0
= O[σ̃]|χ0=x0 :

functionals of σ̃

localized at x0.

⟨V̂ ⟩σ0
x
=
∑∫

υ

Vυ|σ̃υ|2(x0)

⟨N̂⟩σ0
x
=
∑∫

υ

|σ̃υ|2(x0)

▶ υ = j ∈ N/2 (EPRL);
▶ υ = ρ ∈ R (ext. BC).

Wavefunction

isotropy

Oriti 2008.02774; LM, Oriti 2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Oriti, Pithis 2112.00091.
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Effective relational volume dynamics
E
ff
.
d
yn

a
m
ic
s (ciaoMean-field approximation

▶ Mesoscopic regime: large N but negligible interactions.

▶ Derivative expansion of K (due to peaking properties).

▶ Isotropy: σ̃υ ≡ ρυe iθυ fundamental variables.

σ̃
′′
υ − 2iπ̃0σ̃

′
υ − E 2

υσ̃ = 0.

Effective relational Freidmann dynamics(
V ′

3V

)2

≃
(

2
∑∫
υ
Vυρυsgn(ρ

′
υ)
√
Eυ − Q2

υ/ρ
2
υ + µ2

υρ
2
υ

3
∑∫
υ
Vυρ2υ

)2

,
V ′′

V
≃

2
∑∫
υ
Vυ
[
Eυ + 2µ2

υρ
2
υ

]
∑∫
υ
Vυρ2υ

Classical limit (large ρυs, late times) Bounce

▶ If µ2
υ is mildly dependent on υ (or one υ is

dominating) and equal to 3πG

(V ′
/3V )2 ≃ 4πG/3 flat FLRW

▶ Quantum fluctuations on clock and geometric

variables are under control.

▶ A non-zero volume bounce happens for a large

range of initial conditions (at least one Qυ ̸= 0 or

one Eυ < 0).

▶ The average singularity resolution may still be

spoiled by quantum effects on geometric and clock

variables.

LM, Oriti 2008.02774; LM, Oriti 2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Oriti, Pithis 2112.00091; . . .
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(T)GFT interactions and matter
S
ca

la
r
fi
el
d
w
it
h
p
o
te
n
ti
a
l

(ciaoRunning couplings and effective potentials

▶ Adding a scalar field ϕ with potential Uϕ requires (T)GFT interactions, as Vγ =Vγ({g},Uϕ).
▶ Interactions studied perturbatively at late times (mesoscopic regime) and in single j approx.

Modulus interactions Phase interactions

notation: (·, ·) =

∫
d
4
χdϕdga

Tr
(m)
Vγl

[φ, φ̄] ∼ (V(m)
γl
, φ̄

(l+1)/2
φ

(l+1)/2)

GR matching possible only if l = 5, and if

▶ Macroscopic constants (including G) run with

relational time!

notation: (·, ·) =

∫
d
4
χdϕdga

Tr
(p)
Vγl

= (V(p)
γl
, φ

l+1)

GR matching possible only if l = 5, but

▶ Effective scalar field potential corrected by

trigonometric factors.

P
h
a
n
to
m

d
ar
k
en

er
g
y (ciaoEmergent matter components(

▶ Matter can also emerge as a result of pure QG effects!

▶ Consider modulus interactions at very late times, but include a subdominant spin j′:

w = 3− 2(VV ′′)/(V ′)2 ≃ −1− b/V , b > 0 .

▶ Universe effectively dominated by (non-pathologic) emergent phantom dark energy.

Ladstätter, LM, Oriti (to appear); Oriti, Pang 2105.03751.
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Inhomogeneous sector



Two aspects of the inhomogeneity problem

Inhomogeneous

sector

Initial

conditions

Perturbations

dynamics

▶ Fock quantize the emergent perturbation dynamics.
▶ Extract quantum properties directly from GFT.

• First step in GFT using second moment δ2V̂ .

• What about higher moments? Is V̂ really

relational? Only a background result?

▶ Goal: vector, tensor, scalar modes at all scales.
▶ First step in GFT for scalar perturbations in

the separate universe framework.

• Can we extend to all scales? Can we use a

proper physical reference frame?

THIS TAL
K

Gielen, Oriti, 1709.01095; Gerhart, Oriti, Wilson-Ewing 1805.03099.
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Scalar perturbations from GFT condensates

Simplest (slightly) relationally inhomogeneous system

Observables

notation: (·, ·) =

∫
d
4
χdϕdga

F
ra
m
e

X̂µ = (φ̂†
, χ
µ
φ̂) Π̂µ = −i(φ̂†

, ∂µφ̂)

V
o
l.

Only isotropic info: V̂ =(φ̂†
,V [φ̂])

M
a
t.

Φ̂ = (φ̂†
, ϕφ̂) Π̂ϕ = −i(φ̂†

, ∂ϕφ̂)

States

▶ CPSs around χµ = xµ, with

• η: Isotropic peaking on rods;

• σ̃: Isotropic distribution of geometric data.

▶ Small relational σ̃-inhomogeneities (σ̃ = ρe iθ):

ρ = ρ̄(·, χ0) + δρ(·, χµ), θ = θ̄(·, χ0) + δθ(·, χµ).

LM, Oriti 2112.12677; Gerhart, Oriti, Wilson-Ewing 1805.03099.
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Scalar perturbations from GFT condensates

Observables

notation: (·, ·) =
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ρ = ρ̄(·, χ0) + δρ(·, χµ), θ = θ̄(·, χ0) + δθ(·, χµ).

Late times volume and matter dynamics

▶ Averaged q.e.o.m. (no interactions) −→ coupled eqs. for (ρ, θ).

▶ Decoupling for a range of values of CPSs and large N (late times).

single

spin

Dynamic equations

for ⟨V̂ ⟩σ , ⟨Φ̂⟩σ .

LM, Oriti 2112.12677; Gerhart, Oriti, Wilson-Ewing 1805.03099.

Luca Marchetti Developments in GFT Cosmology 10



Scalar perturbations from GFT condensates
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Background

Matching with GR possible.

▶ Emergent matter and G defined in terms

of microscopic parameters.

LM, Oriti 2112.12677; Gerhart, Oriti, Wilson-Ewing 1805.03099.
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Scalar perturbations from GFT condensates
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single

spin

Dynamic equations
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Background Perturbations
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▶ Emergent matter and G defined in terms

of microscopic parameters.
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Scalar perturbations from GFT condensates
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Late times volume and matter dynamics

▶ Averaged q.e.o.m. (no interactions) −→ coupled eqs. for (ρ, θ).

▶ Decoupling for a range of values of CPSs and large N (late times).

single

spin

Dynamic equations

for ⟨V̂ ⟩σ , ⟨Φ̂⟩σ .

Background Perturbations

Matching with GR possible.

▶ Emergent matter and G defined in terms

of microscopic parameters.

Super-horizon GR matching.

▶ No matching for intermediate and subhorizon

modes. Frame coupling issues?

LM, Oriti 2112.12677; Gerhart, Oriti, Wilson-Ewing 1805.03099.
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Super-horizon scalar perturbations

Observables

notation: (·, ·) =

∫
d
4
χdϕdga
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Φ̂ = (φ̂†
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States

▶ CPSs around χµ = xµ, with

• η: Isotropic peaking on rods;

• σ̃: Isotropic distribution of geometric data.

▶ Small relational σ̃-inhomogeneities (σ̃ = ρe iθ):

ρ = ρ̄(·, χ0) + δρ(·, χµ), θ = θ̄(·, χ0) + δθ(·, χµ).

Super-horizon volume and matter dynamics

▶ Averaged q.e.o.m. (no interactions) −→ coupled eqs. for (ρ, θ).

▶ Restrict to super-horizon modes but study also early times.

single

spin

Dynamic equations

for ⟨V̂ ⟩σ , ⟨Φ̂⟩σ

Bertschinger 0604485; Fischer, LM, Oriti (to appear); LM, Oriti 2112.12677; Gielen, Mickel 2211.04500.
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Modified gravity

▶ Dynamics of super-horizon scalar perturbations

can be obtained generically for any MG theory.

▶ No matching at early times with effective GFT

volume dynamics.
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single
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Dynamic equations

for ⟨V̂ ⟩σ , ⟨Φ̂⟩σ

Modified gravity Perturbing background dynamics
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can be obtained generically for any MG theory.

▶ No matching at early times with effective GFT

volume dynamics.

▶ Study super-horizon scalar perturbations by

perturbing background QG volume eq.
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Bertschinger 0604485; Fischer, LM, Oriti (to appear); LM, Oriti 2112.12677; Gielen, Mickel 2211.04500.
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Scalar perturbations at all scales
yC

o
m
p
le
te

ex
te
n
d
ed

B
C
y (ciaoCausal frame fields coupling

Causal properties of frame fields can be easily implemented in the complete extended BC model.

▶ φα≡φ(ga,Xα, χµ, ϕ), g ∈SL(2,C), Xα tetrahedron normal defining its causal character, α=±.

Two-sector Fock space Frame coupling

▶ Generic operators on F = F+ ⊗ F− correlate

spacelike and timelike tetrahedra.

▶ Volume operator is an exception: V̂ = V̂+ ⊗ I−.

K+ = K+(·, (χ0 − χ0′)2) ,

K− = K−(·, |χ− χ
′|2) .

yC
o
lle

ct
iv
e
st
a
te
sy

(ciaoIncluding two-body correlations(

|ψ⟩ = Nψ exp(σ̂ ⊗ I− + I+ ⊗ τ̂ + δ̂Φ⊗ I− + δ̂Ψ + I+ ⊗ δ̂Ξ) |0⟩

Background Perturbations

▶ σ̂ = (σ, φ̂†
+): spacelike condensate.

▶ τ̂ = (τ, φ̂†
−): timelike condensate.

▶ τ , σ peaked; τ̃ , σ̃ homogeneous.

▶ δ̂Φ=(δΦ, φ̂†
+φ̂

†
+), δ̂Ψ=(δΨ, φ̂†

+φ̂
†
−), δ̂Ξ=(δΞ, φ̂†

−φ̂
†
−).

▶ δΦ, δΨ and δΞ small and relationally inhomogeneous.

▶ Perturbations=nearest neighbour 2-body correlations.

Jercher, LM, Pithis (to appear); Jercher, Oriti, Pithis 2206.15442.
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+φ̂

†
+), δ̂Ψ=(δΨ, φ̂†

+φ̂
†
−), δ̂Ξ=(δΞ, φ̂†

−φ̂
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−).

▶ δΦ, δΨ and δΞ small and relationally inhomogeneous.

▶ Perturbations=nearest neighbour 2-body correlations.

E
ff
ec
ti
ve

d
yn

a
m
ic
s

(ciaoScalar perturbations

▶ Mean-field equations (negligible interactions):

⟨δS/δφ̂†
+⟩ψ = 0 = ⟨δS/δφ̂†

−⟩ψ
▶ 2 coupled eqs. for 3 variables: (δΦ, δΨ, δΞ)!

▶ Late times and single (spacelike) rep. label.

δVψ ∝ Re(δΨ, σ̃τ̃) + Re(δΦ, σ̃2)

▶ Late time GR matching fixes:

• Parameters determining τ dynamics;

• Dynamical freedom (e.g. in δΦ).

Late times volume perturbations dynamics matches GR at all scales!

Jercher, LM, Pithis (to appear); Jercher, Oriti, Pithis 2206.15442.
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Homogeneous

sector

Early

times

Late

times

de Cesare, Pithis, Sakellariadou 1606.00352; Ladstätter, LM, Oriti (to appear); Oriti, Pang 2105.03751; Gielen, Polaczek 1912.06143 ; . . .
LM, Oriti 2008.02774 - 2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Oriti, Pithis 2112.00091;
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Homogeneous

sector

Early

times

Late

times

Results

Singularity resolution into quantum bounce.

Universal bounce (for MCMF scalar field).

Impact of quantum effects on the bounce (and

interplay with relationality).

▶ Acceleration produced by the bounce not long

enough to sustain inflation.

de Cesare, Pithis, Sakellariadou 1606.00352; Ladstätter, LM, Oriti (to appear); Oriti, Pang 2105.03751; Gielen, Polaczek 1912.06143 ; . . .
LM, Oriti 2008.02774 - 2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Oriti, Pithis 2112.00091;
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sector

Early

times

Late

times

Results Results

Singularity resolution into quantum bounce.

Universal bounce (for MCMF scalar field).

Impact of quantum effects on the bounce (and

interplay with relationality).

▶ Acceleration produced by the bounce not long

enough to sustain inflation.

Small interactions: classical regime identified

(small quantum fluctuations and GR matching).

Universal classical limit (for MCMF scalar field).

Inclusion of scalar field with potential: emergent

running couplings.

▶ Exotic matter can emerge from GFT interactions.

de Cesare, Pithis, Sakellariadou 1606.00352; Ladstätter, LM, Oriti (to appear); Oriti, Pang 2105.03751; Gielen, Polaczek 1912.06143 ; . . .
LM, Oriti 2008.02774 - 2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Oriti, Pithis 2112.00091;
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Homogeneous

sector

Early

times

Late

times

Perspectives Perspectives

▶ Extend the analysis to more generic fluids.

▶ Universal bounce also for generic fluids?

In particular, would trigonometric modifications

to a scalar field potential appear at early times?

What kind of inflationary physics is generated?

▶ Extend the analysis to more generic fluids.

▶ Universal classical limit also for generic fluids?

▶ Insights on the renormalization properties of

GFTs from emergent running couplings?

▶ Can we rely on mean-field approx. at late times?

de Cesare, Pithis, Sakellariadou 1606.00352; Ladstätter, LM, Oriti (to appear); Oriti, Pang 2105.03751; Gielen, Polaczek 1912.06143 ; . . .
LM, Oriti 2008.02774 - 2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Oriti, Pithis 2112.00091;

Luca Marchetti Developments in GFT Cosmology 13



Inhomogeneous

sector

Early

times

Late

times
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Inhomogeneous

sector

Early

times

Late

times

Results

Super-horizon analysis in EPRL with MCMF

scalar fields:

Scalar pert. dynamics differs from any MG

model.

Full QG scalar pert. dynamics differs from

perturbed background dynamics.

LM, Oriti 2112.12677; Fischer, LM, Oriti (to appear); Jercher, LM, Pithis (to appear); Gerhart, Oriti, Wilson-Ewing 1805.03099.

Luca Marchetti Developments in GFT Cosmology 14



Inhomogeneous

sector

Early

times

Late

times

Results Results

Super-horizon analysis in EPRL with MCMF

scalar fields:

Scalar pert. dynamics differs from any MG

model.

Full QG scalar pert. dynamics differs from

perturbed background dynamics.

All scales analysis for complete BC model with

MCMF scalar fields:

Manifest causal properties of quanta allow for

a careful coupling of the physical ref. frame.

Scalar pert. ←→ quantum correlations!

Late-times scalar pert. dynamics matches GR!

LM, Oriti 2112.12677; Fischer, LM, Oriti (to appear); Jercher, LM, Pithis (to appear); Gerhart, Oriti, Wilson-Ewing 1805.03099.
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Inhomogeneous

sector

Early

times

Late

times

Perspectives Perspectives

Different fundamental d.o.f. −→ different

perturbation dynamics?

Scalar field perturbations? EFT description?

▶ Are the results universal? Analysis in BC!

▶ Generalization to physically interesting fluids.

▶ Extension to VT modes: more observables!

▶ Initial conditions and power spectra?

• Fock quantization of early-times dynamics.

• Can we derive it from full QG?

Physical interpretation and consequences of

matching conditions?

Scalar field perturbations? EFT description?

▶ Are the results universal? Extension to EPRL!

▶ Generalization to physically interesting fluids.

▶ Extension to VT modes: more observables!

▶ How do quantum perturbations classicalize?

▶ How do GFT interactions change the picture?

Fischer, LM, Oriti (to appear); Jercher, LM, Pithis (to appear); Dekhil, Liberati, Oriti (to appear); Calcinari, Gielen 2210.03149.
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Specifics of GFT models
E
P
R
L
m
o
d
el

S =
∑

{ja},{j′a},{ma},{m′
a},ι,ι

′
φ̄

{ja}ι
{ma}

φ
{j′a}ι

′

{m′
a}
K{ja}{j′a}ιι

′

{ma}{m′
a}

+ V5 ,

V5 =
1

5

∑
{ja},{ma},{ιb}

φ
j1 j2 j3 j4ι1
m1m2m3m4

φ
j4 j5 j6 j7ι2
−m4m5m6m7

φ
j7 j3 j8 j9ι3
−m7−m3m8m9

φ
j9 j6 j2 j10ι4
−m9−m6−m2m10

φ
j10 j8 j5 j1ι5
−m10−m8−m5−m1

×
10∏
c=1

(−1)jc−mcV5(j1, . . . , j10; ι1, . . . , ι5) ,

V5({jc}, {ιb}) =
∑
{nA}

∫ [∏
A

dρA(n
2
A + ρ

2
A)

][⊗
b

f
ιb
{nA}{ρA}({ja})

]
{15j}SL(2,C) ,

where f maps SL(2,C) data into SU(2) ones by imposing the constraints n = 2j and ρ = 2jγ.

E
xt
en

d
ed

B
C

m
o
d
el

S =

∏
i

∫
dρi 4ρ

2
i

∑
ji mi

 φ̄ρiji mi
φ
ρi
ji mi

+
λ

5

 10∏
a=1

∫
dρa 4ρ

2
a

∑
jama

[ 10∏
a=1

(−1)−ja−ma

]
{10ρ}BC

× φρ1ρ2ρ3ρ4j1m1 j2m2 j3m3 j4m4
φ
ρ4ρ5ρ6ρ7
j4−m4 j5m5 j6m6 j7m7

φ
ρ7ρ3ρ8ρ9
j7−m7 j3−m3 j8m8 j9m9

× φρ9ρ6ρ2ρ10j9−m9 j6−m6 j2−m2 j10m10
φ
ρ10ρ8ρ5ρ1
j10−m10 j8−m8 j5−m5 j1−m1

+ c.c.

a = 1, . . . , 4

b = 1, . . . , 5

c = 1, . . . , 10

Engle, Livine, Pereira, Rovelli 0711.0146; Gielen, Oriti, Sindoni 1311.1238; Jercher, Oriti, Pithis 2112.00091.
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