

(T)GFT and Emergent Cosmology

Luca Marchetti

Gravity Group seminars Fredericton, 8 and 15 February 2023

Department of Mathematics and Statistics UNB Fredericton

Table of contents

- The (T)GFT approach to Quantum Gravity
 - The fundamental principles
 - Group Field Theory quanta
 - Group Field Theory dynamics
 - Including scalar matter
- Intermezzo: the QG perspective on Cosmology
- Homogeneous cosmologies from (T)GFT condensates
 - (T)GFT condensates and effective relationality
 - Emergent effective Friedmann dynamics
- Exploring the physics of (T)GFT condensates
 - Inhomogeneities, inflation, dark energy and running couplings

The (T)GFT approach to QG

GFTs are QFTs of atoms of spacetime.

- Take seriously the idea of a microscopic structure of spacetime.
- ▶ Related to canonical and discrete path-integral approaches to QG.
- Physical insights from canonical approaches combined with powerful field theoretic methods!

Oriti 0912.2441; Oriti 1110.5606; Oriti 1408.7112; Krajewski 1210.6257; Oriti 1807.04875; Gielen, Sindoni 1602.08104; ...

The (T)GFT approach to QG

GFTs are QFTs of atoms of spacetime.

- Take seriously the idea of a microscopic structure of spacetime.
- ▶ Related to canonical and discrete path-integral approaches to QG.
- Physical insights from canonical approaches combined with powerful field theoretic methods!

Group Field Theory Quanta

- ▶ GFT quanta are atoms of quantum spacetime, i.e. d − 1-dimensional simplices.
- Data associated to a single quantum are geometric data of a d - 1-simplex.

Oriti 0912.2441; Oriti 1110.5606; Oriti 1408.7112; Krajewski 1210.6257; Oriti 1807.04875; Gielen, Sindoni 1602.08104; ...

The (T)GFT approach to QG

GFTs are QFTs of atoms of spacetime.

- Take seriously the idea of a microscopic structure of spacetime.
- ▶ Related to canonical and discrete path-integral approaches to QG.
- Physical insights from canonical approaches combined with powerful field theoretic methods!

Group Field Theory Quanta

- ▶ GFT quanta are atoms of quantum spacetime, i.e. d − 1-dimensional simplices.
- Data associated to a single quantum are geometric data of a d - 1-simplex.

Group Field Theory Processes

- GFT Feynman diagrams (QG processes) are associated to d-dimensional triangulated manifolds.
- Data associated to QG processes are geometric data of d-dimensional triangulated manifolds.

Classical tetrahedron

A Euclidean tetrahedron is described by 4 bivectors $B_a \in \wedge^2 R^4$, with

- Closure: $\sum_{a} B_{a} = 0$ (faces of the tetrahedron close).
- Simplicity: $X \cdot \star B_a = 0$, i.e. B_a is simple: $(B \sim e \wedge e')$.

Barbieri 9707010; Baez, Barrett 9903060; Baratin, Oriti 1002.4723; Guedes, Oriti, Raasakka 1301.7750; Gielen, Oriti 1004.5371; Oriti 1310.7786...

Classical tetrahedron

A Euclidean tetrahedron is described by 4 bivectors $B_a \in \wedge^2 R^4$, with

- Closure: $\sum_{a} B_{a} = 0$ (faces of the tetrahedron close).
- Simplicity: $X \cdot \star B_a = 0$, i.e. B_a is simple: $(B \sim e \wedge e')$.

B_3 B_1 B_4

Quantum tetrahedron

- Using $\wedge^2 \mathbb{R}^4 \simeq \mathfrak{spin}(4)$ the face phase space is $\mathcal{T}^*(\mathrm{Spin}(4)) \sim \mathrm{Spin}(4) \times \mathfrak{spin}(4)$.
- $\mathcal{T}^*(\text{Spin}(4))$ has a natural Poisson structure which can be canonically quantized.
- $\mathcal{H}_{tetra} \subset \otimes_{a=1}^{4} \mathcal{H}_{\Delta_a}$ (subset defined by the imposition of constraints).

Barbieri 9707010; Baez, Barrett 9903060; Baratin, Oriti 1002.4723; Guedes, Oriti, Raasakka 1301.7750; Gielen, Oriti 1004.5371; Oriti 1310.7786...

Classical tetrahedron

A Euclidean tetrahedron is described by 4 bivectors $B_a \in \wedge^2 R^4$, with

- Closure: $\sum_{a} B_{a} = 0$ (faces of the tetrahedron close).
- Simplicity: $X \cdot \star B_a = 0$, i.e. B_a is simple: $(B \sim e \wedge e')$.

Quantum tetrahedron

- ▶ Using $\wedge^2 \mathbb{R}^4 \simeq \mathfrak{spin}(4)$ the face phase space is $\mathcal{T}^*(\mathrm{Spin}(4)) \sim \mathrm{Spin}(4) \times \mathfrak{spin}(4)$.
- $\mathcal{T}^*(\text{Spin}(4))$ has a natural Poisson structure which can be canonically quantized.
- $\mathcal{H}_{tetra} \subset \otimes_{a=1}^{4} \mathcal{H}_{\Delta_a}$ (subset defined by the imposition of constraints).

Lie algebra rep.

 $\mathcal{H}_{\Delta_{\boldsymbol{\partial}}} = L^2(\mathfrak{spin}(4))$

Barbieri 9707010; Baez, Barrett 9903060; Baratin, Oriti 1002.4723; Guedes, Oriti, Raasakka 1301.7750; Gielen, Oriti 1004.5371; Oriti 1310.7786...

Reps.

Classical tetrahedron

A Euclidean tetrahedron is described by 4 bivectors $B_a \in \wedge^2 R^4$, with

- Closure: $\sum_{a} B_{a} = 0$ (faces of the tetrahedron close).
- Simplicity: $X \cdot \star B_a = 0$, i.e. B_a is simple: $(B \sim e \wedge e')$.

Quantum tetrahedron

- ▶ Using $\wedge^2 \mathbb{R}^4 \simeq \mathfrak{spin}(4)$ the face phase space is $\mathcal{T}^*(\mathrm{Spin}(4)) \sim \mathrm{Spin}(4) \times \mathfrak{spin}(4)$.
- $\mathcal{T}^*(\text{Spin}(4))$ has a natural Poisson structure which can be canonically quantized.
- $\mathcal{H}_{tetra} \subset \otimes_{a=1}^{4} \mathcal{H}_{\Delta_a}$ (subset defined by the imposition of constraints).

Lie algebra rep. $\mathcal{H}_{\Delta_{\vartheta}} = L^{2}(\mathfrak{spin}(4))$ Non-comm. Lie group rep. $\mathcal{H}_{\Delta_{\vartheta}} = L^{2}(\mathfrak{spin}(4))$

Barbieri 9707010; Baez, Barrett 9903060; Baratin, Oriti 1002.4723; Guedes, Oriti, Raasakka 1301.7750; Gielen, Oriti 1004.5371; Oriti 1310.7786...

Classical tetrahedron

A Euclidean tetrahedron is described by 4 bivectors $B_a \in \wedge^2 R^4$, with

- Closure: $\sum_{a} B_{a} = 0$ (faces of the tetrahedron close).
- Simplicity: $X \cdot \star B_a = 0$, i.e. B_a is simple: $(B \sim e \wedge e')$.

Quantum tetrahedron

- ▶ Using $\wedge^2 \mathbb{R}^4 \simeq \mathfrak{spin}(4)$ the face phase space is $\mathcal{T}^*(\mathrm{Spin}(4)) \sim \mathrm{Spin}(4) \times \mathfrak{spin}(4)$.
- $\mathcal{T}^*(\text{Spin}(4))$ has a natural Poisson structure which can be canonically quantized.
- $\mathcal{H}_{\text{tetra}} \subset \bigotimes_{a=1}^{4} \mathcal{H}_{\Delta_a}$ (subset defined by the imposition of constraints).

Lie algebra rep. $\mathcal{H}_{\Delta_a} = L^2(\mathfrak{spin}(4))$ $\overset{\text{Non-comm.}}{\mathsf{FT}}$ $\overset{\text{Lie group rep.}}{\mathcal{H}_{\Delta_a}} = L^2(\text{Spin}(4))$ $\overset{\text{Peter-Weyl}}{\mathsf{Theorem}}$ $\overset{\text{Spin rep.}}{\mathcal{H}_{\Delta_a}} = \bigoplus_{J_a} \mathcal{H}_{J_a}$

Barbieri 9707010; Baez, Barrett 9903060; Baratin, Oriti 1002.4723; Guedes, Oriti, Raasakka 1301.7750; Gielen, Oriti 1004.5371; Oriti 1310.7786...

Classical tetrahedron

A Euclidean tetrahedron is described by 4 bivectors $B_a \in \wedge^2 R^4$, with

- Closure: $\sum_{a} B_{a} = 0$ (faces of the tetrahedron close).
- Simplicity: $X \cdot \star B_a = 0$, i.e. B_a is simple: $(B \sim e \wedge e')$.

Quantum tetrahedron

- ▶ Using $\wedge^2 \mathbb{R}^4 \simeq \mathfrak{spin}(4)$ the face phase space is $\mathcal{T}^*(\mathrm{Spin}(4)) \sim \mathrm{Spin}(4) \times \mathfrak{spin}(4)$.
- $\mathcal{T}^*(\text{Spin}(4))$ has a natural Poisson structure which can be canonically quantized.
- $\mathcal{H}_{tetra} \subset \otimes_{a=1}^{4} \mathcal{H}_{\Delta_a}$ (subset defined by the imposition of constraints).

Lie algebra rep. $\mathcal{H}_{\Delta_a} = L^2(\mathfrak{spin}(4))$ $\overset{\text{Non-comm.}}{\mathsf{FT}}$ $\overset{\text{Lie group rep.}}{\mathcal{H}_{\Delta_a}} = L^2(\text{Spin}(4))$ $\overset{\text{Peter-Weyl}}{\overset{\text{Theorem}}{\mathsf{Theorem}}}$ $\overset{\text{Spin rep.}}{\mathcal{H}_{\Delta_a}} = \bigoplus_{J_a} \mathcal{H}_{J_a}$

Discretized gravity

- Discretized Palatini gravity can be written as constrained BF theory.
 - $\blacktriangleright \quad B \sim e \wedge e \text{ and } g \sim \mathcal{P} \exp \omega.$

Barbieri 9707010; Baez, Barrett 9903060; Baratin, Oriti 1002.4723; Guedes, Oriti, Raasakka 1301.7750; Gielen, Oriti 1004.5371; Oriti 1310.7786...

Luca Marchetti

Reps.

Gravity

(T)GFT and Emergent Cosmology

Classical tetrahedron

A Euclidean tetrahedron is described by 4 bivectors $B_a \in \wedge^2 R^4$, with

- Closure: $\sum_{a} B_{a} = 0$ (faces of the tetrahedron close).
- Simplicity: $X \cdot \star B_a = 0$, i.e. B_a is simple: $(B \sim e \wedge e')$.

Quantum tetrahedron

- ▶ Using $\wedge^2 \mathbb{R}^4 \simeq \mathfrak{spin}(4)$ the face phase space is $\mathcal{T}^*(\mathrm{Spin}(4)) \sim \mathrm{Spin}(4) \times \mathfrak{spin}(4)$.
- $\mathcal{T}^*(\text{Spin}(4))$ has a natural Poisson structure which can be canonically quantized.
- $\mathcal{H}_{\text{tetra}} \subset \bigotimes_{a=1}^{4} \mathcal{H}_{\Delta_a}$ (subset defined by the imposition of constraints).

Lie algebra rep. $\mathcal{H}_{\Delta_a} = L^2(\mathfrak{spin}(4))$ $\stackrel{\text{Non-comm.}}{\text{FT}}$ $\stackrel{\text{Lie group rep.}}{\mathcal{H}_{\Delta_a}} = L^2(\text{Spin}(4))$ $\stackrel{\text{Peter-Weyl}}{\xrightarrow{}}$ $\stackrel{\text{Spin rep.}}{\mathcal{H}_{\Delta_a}} = \bigoplus_{J_a} \mathcal{H}_{J_a}$

Discretized gravity

- Discretized Palatini gravity can be written as constrained BF theory.
 - ▶ $B \sim e \wedge e$ and $g \sim \mathcal{P} \exp \omega$.

Loop Quantum Gravity

► Fix the normal and reduce to SU(2).

$$\mathcal{H}_{\mathsf{tetra}} = \mathsf{open} \; \mathsf{spin-network} \; \mathsf{space} = igoplus_{ec{j}} \left[igotimes_{a=1}^4 \mathcal{H}_{j_a} \otimes \mathcal{I}^{ec{j}}
ight]$$

Barbieri 9707010; Baez, Barrett 9903060; Baratin, Oriti 1002.4723; Guedes, Oriti, Raasakka 1301.7750; Gielen, Oriti 1004.5371; Oriti 1310.7786...

Luca Marchetti

(T)GFT and Emergent Cosmology

Gravity

Tetrahedron wavefunction

 $\varphi(g_1, \ldots, g_4)$ (subject to constraints)

Oriti 1310.7786; Gielen, Oriti 1407.8167; Gielen, Sindoni 1602.08104; Oriti, Sindoni, Wilson-Ewing 1602.05881; ...

Oriti 1310.7786; Gielen, Oriti 1407.8167; Gielen, Sindoni 1602.08104; Oriti, Sindoni, Wilson-Ewing 1602.05881; ...

$$\mathcal{F}_{\mathsf{GFT}} = \bigoplus_{V=0}^{\infty} \operatorname{sym} \left[\mathcal{H}_{\mathsf{tetra}}^{(1)} \otimes \mathcal{H}_{\mathsf{tetra}}^{(2)} \otimes \ldots \mathcal{H}_{\mathsf{tetra}}^{(V)} \right]$$

- ▶ $\mathcal{F}_{\mathsf{GFT}}$ generated by action of $\hat{\varphi}^{\dagger}(g_a)$ on $|0\rangle$, with $[\hat{\varphi}(g_a), \hat{\varphi}^{\dagger}(g_a')] = \mathbb{I}_{\mathcal{G}}(g_a, g_a')$.
- $\blacktriangleright \ \mathcal{H}_{\Gamma} \subset \mathcal{F}_{\mathsf{GFT}}, \ \mathcal{H}_{\Gamma} \ \text{space of states associated to connected simplicial complexes } \Gamma.$
- Generic quantum states do not correspond to connected simplicial lattices nor classical simplicial geometries.

Oriti 1310.7786; Gielen, Oriti 1407.8167; Gielen, Sindoni 1602.08104; Oriti, Sindoni, Wilson-Ewing 1602.05881; ...

$$\mathcal{F}_{\mathsf{GFT}} = \bigoplus_{V=0}^{\infty} \operatorname{sym} \left[\mathcal{H}_{\mathsf{tetra}}^{(1)} \otimes \mathcal{H}_{\mathsf{tetra}}^{(2)} \otimes \ldots \mathcal{H}_{\mathsf{tetra}}^{(V)} \right]$$

- ▶ \mathcal{F}_{GFT} generated by action of $\hat{\varphi}^{\dagger}(g_a)$ on $|0\rangle$, with $[\hat{\varphi}(g_a), \hat{\varphi}^{\dagger}(g'_a)] = \mathbb{I}_G(g_a, g'_a)$.
- $\blacktriangleright \ \mathcal{H}_{\Gamma} \subset \mathcal{F}_{\mathsf{GFT}}, \ \mathcal{H}_{\Gamma} \ \text{space of states associated to connected simplicial complexes } \Gamma.$
- Generic quantum states do not correspond to connected simplicial lattices nor classical simplicial geometries.

Volume operator
$$V = \int \mathrm{d}g_a^{(1)} \, \mathrm{d}g_a^{(2)} V(g_a^{(1)}, g_a^{(2)}) \hat{\varphi}^{\dagger}(g_a^{(1)}) \hat{\varphi}(g_a^{(2)}) = \sum_{J_a} V_{J_a} \hat{\varphi}^{\dagger}_{J_a} \hat{\varphi}_{J_a} \hat{\varphi}_{J_a} \hat{\varphi}_{J_a}.$$

Generic second quantization prescription to build a *m* + *n*-body operator: sandwich matrix elements between spin-network states between *m* powers of *φ*[↑] and *n* powers of *φ*^ˆ.

Oriti 1310.7786; Gielen, Oriti 1407.8167; Gielen, Sindoni 1602.08104; Oriti, Sindoni, Wilson-Ewing 1602.05881; ...

Luca Marchetti

Operators

(T)GFT and Emergent Cosmology

357

Interaction terms are combinatorially non-local.

Field arguments convoluted pairwise following the combinatorial pattern dictated by the graph γ:

 $\mathcal{S}[arphi,ar{arphi}] = \int \mathrm{d} g_{\mathfrak{s}} ar{arphi}(g_{\mathfrak{s}}) \mathcal{K}[arphi](g_{\mathfrak{s}}) + \sum_{\gamma} rac{\lambda_{\gamma}}{n_{\gamma}} \operatorname{Tr}_{\gamma}[arphi] + ext{c.c.} \,.$

$$\mathsf{Tr}_{\gamma}[\varphi] = \int \prod_{i=1}^{n_{\gamma}} \mathrm{d}g_{a} \prod_{(a,i;b,j)} \mathcal{V}(g_{a}^{(i)}, g_{b}^{(j)}) \prod_{i=1}^{n_{\gamma}} \varphi(g_{a}^{(i)})$$

Oriti 1110.5606; Reisenberger, Rovelli 0002083; De Pietri, Petronio 0004045; Gurau 1006.0714; Baratin, Oriti 1002.4723; Finocchiaro, Oriti 1812.03550;

$$S[arphi,ar{arphi}] = \int \mathrm{d}g_{a}ar{arphi}(g_{a})\mathcal{K}[arphi](g_{a}) + \sum_{\gamma}rac{\lambda_{\gamma}}{n_{\gamma}} \operatorname{Tr}_{\gamma}[arphi] + ext{c.c.} \,.$$

- Interaction terms are combinatorially non-local.
- Field arguments convoluted pairwise following the combinatorial pattern dictated by the graph γ:

$$\mathsf{Tr}_{\gamma}[\varphi] = \int \prod_{i=1}^{n_{\gamma}} \mathrm{d}g_{a} \prod_{(a,i;b,j)} \mathcal{V}(g_{a}^{(i)}, g_{b}^{(j)}) \prod_{i=1}^{n_{\gamma}} \varphi(g_{a}^{(i)}) \,.$$

$$Z[\varphi, \bar{\varphi}] = \sum_{\Gamma} w_{\Gamma}(\{\lambda_{\gamma}\})A_{\Gamma}.$$

- · Diagrams Γ = stranded diagrams dual to *d*-dimensional cellular complexes of arbitrary topology.
- Amplitudes A_{Γ} = sums over group theoretic data associated to the cellular complex.

Oriti 1110.5606; Reisenberger, Rovelli 0002083; De Pietri, Petronio 0004045; Gurau 1006.0714; Baratin, Oriti 1002.4723; Finocchiaro, Oriti 1812.03550;

Partition function

$$S[arphi,ar{arphi}] = \int \mathrm{d}g_{a}ar{arphi}(g_{a})\mathcal{K}[arphi](g_{a}) + \sum_{\gamma}rac{\lambda_{\gamma}}{n_{\gamma}} \operatorname{Tr}_{\gamma}[arphi] + ext{c.c.} \,.$$

- Interaction terms are combinatorially non-local.
- Field arguments convoluted pairwise following the combinatorial pattern dictated by the graph γ:

$$\mathsf{Tr}_{\gamma}[\varphi] = \int \prod_{i=1}^{n_{\gamma}} \mathrm{d}g_{a} \prod_{(a,i;b,j)} \mathcal{V}(g_{a}^{(i)}, g_{b}^{(j)}) \prod_{i=1}^{n_{\gamma}} \varphi(g_{a}^{(i)}) \,.$$

$$Z[\varphi,\bar{\varphi}] = \sum_{\Gamma} w_{\Gamma}(\{\lambda_{\gamma}\})A_{\Gamma} = \text{ spinfoam model}.$$

- Diagrams Γ = stranded diagrams dual to d-dimensional cellular complexes of arbitrary topology.
- Amplitudes A_{Γ} = sums over group theoretic data associated to the cellular complex.
- \mathcal{K} and \mathcal{V} can be chosen to match the desired simplicial gravity path-integral.

Oriti 1110.5606; Reisenberger, Rovelli 0002083; De Pietri, Petronio 0004045; Gurau 1006.0714; Baratin, Oriti 1002.4723; Finocchiaro, Oriti 1812.03550;

Partition function

$$S[arphi,ar{arphi}] = \int \mathrm{d}g_a ar{arphi}(g_a) \mathcal{K}[arphi](g_a) + \sum_{\gamma} rac{\lambda_{\gamma}}{n_{\gamma}} \operatorname{Tr}_{\gamma}[arphi] + \mathrm{c.c.} \ .$$

- Interaction terms are combinatorially non-local.
- Field arguments convoluted pairwise following the combinatorial pattern dictated by the graph γ:

$$\mathsf{Tr}_{\gamma}[\varphi] = \int \prod_{i=1}^{n_{\gamma}} \mathrm{d}g_{\mathfrak{a}} \prod_{(\mathfrak{a},i;b,j)} \mathcal{V}(g_{\mathfrak{a}}^{(i)},g_{\mathfrak{b}}^{(j)}) \prod_{i=1}^{n_{\gamma}} \varphi(g_{\mathfrak{a}}^{(i)}) \,.$$

$$Z[\varphi, \bar{\varphi}] = \sum_{\Gamma} w_{\Gamma}(\{\lambda_{\gamma}\})A_{\Gamma} = \text{ spinfoam model}.$$

- · Diagrams Γ = stranded diagrams dual to *d*-dimensional cellular complexes of arbitrary topology.
- Amplitudes A_{Γ} = sums over group theoretic data associated to the cellular complex.
 - \mathcal{K} and \mathcal{V} can be chosen to match the desired simplicial gravity path-integral.

Boulatov model:
$$g_a \in SU(2)$$
, $a = 1, 2, 3$, $\mathcal{K} = \delta(g_a, g_b)$, $\gamma = \underline{/ \cdot \cdot}$.

Oriti 1110.5606; Reisenberger, Rovelli 0002083; De Pietri, Petronio 0004045; Gurau 1006.0714; Baratin, Oriti 1002.4723; Finocchiaro, Oriti 1812.03550;

Luca Marchetti

3d grav on latti

Partition function

Example

(T)GFT and Emergent Cosmology

$$S[arphi,ar{arphi}] = \int \mathrm{d}g_a ar{arphi}(g_a) \mathcal{K}[arphi](g_a) + \sum_{\gamma} rac{\lambda_{\gamma}}{n_{\gamma}} \operatorname{Tr}_{\gamma}[arphi] + \mathrm{c.c.} \ .$$

- Interaction terms are combinatorially non-local.
- Field arguments convoluted pairwise following the combinatorial pattern dictated by the graph γ :

$$\mathsf{Tr}_{\gamma}[\varphi] = \int \prod_{i=1}^{n_{\gamma}} \mathrm{d}g_{\mathfrak{a}} \prod_{(\mathfrak{a},i;b,j)} \mathcal{V}(g_{\mathfrak{a}}^{(i)},g_{\mathfrak{b}}^{(j)}) \prod_{i=1}^{n_{\gamma}} \varphi(g_{\mathfrak{a}}^{(i)}) \,.$$

$$Z[\varphi,\bar{\varphi}] = \sum_{\Gamma} w_{\Gamma}(\{\lambda_{\gamma}\})A_{\Gamma} = \text{ spinfoam model}.$$

- Diagrams Γ = stranded diagrams dual to *d*-dimensional cellular complexes of arbitrary topology.
- Amplitudes A_{Γ} = sums over group theoretic data associated to the cellular complex. ►
 - \mathcal{K} and \mathcal{V} can be chosen to match the desired simplicial gravity path-integral.

Oriti 1110.5606: Reisenberger, Rovelli 0002083: De Pietri, Petronio 0004045: Gurau 1006.0714: Baratin, Oriti 1002.4723: Finocchiaro, Oriti 1812.03550

Luca Marchetti

du

Partition function

Example

(T)GFT and Emergent Cosmology

(Tensorial) Group Field Theories: theories of a field $\varphi : G^d \to \mathbb{C}$ defined on *d* copies of a group manifold *G*. $\begin{array}{l} d \mbox{ is the dimension of the "spacetime to be" } (d=4) \\ \mbox{ and } G \mbox{ is the local gauge group of gravity,} \\ G={\rm SL}(2,\mathbb{C}) \mbox{ or, in many applications, } G={\rm SU}(2). \end{array}$

(Tensorial) Group Field Theories: theories of a field $\varphi : G^d \to \mathbb{C}$ defined on *d* copies of a group manifold *G*. $\begin{array}{l} d \mbox{ is the dimension of the "spacetime to be" } (d=4) \\ \mbox{ and } G \mbox{ is the local gauge group of gravity,} \\ G={\rm SL}(2,\mathbb{C}) \mbox{ or, in many applications, } G={\rm SU}(2). \end{array}$

Kinematics

Boundary states are d - 1-simplices decorated with group theoretic data:

(Tensorial) Group Field Theories: theories of a field $\varphi : G^d \to \mathbb{C}$ defined on *d* copies of a group manifold *G*. $\begin{array}{l} d \mbox{ is the dimension of the "spacetime to be" } (d=4) \\ \mbox{ and } G \mbox{ is the local gauge group of gravity,} \\ G={\rm SL}(2,\mathbb{C}) \mbox{ or, in many applications, } G={\rm SU}(2). \end{array}$

Kinematics

Boundary states are d-1-simplices decorated with group theoretic data:

Appropriate (geometricity) constraints allow the simplicial interpretation.

(Tensorial) Group Field Theories: theories of a field $\varphi : G^d \to \mathbb{C}$ defined on *d* copies of a group manifold *G*. d is the dimension of the "spacetime to be" (d = 4)and G is the local gauge group of gravity, $G = SL(2, \mathbb{C})$ or, in many applications, G = SU(2).

Kinematics

Boundary states are d-1-simplices decorated with group theoretic data:

- Appropriate (geometricity) constraints allow the simplicial interpretation.
- ► Group (Lie algebra) variables associated to discretized gravitational quantities. H_{1-P}

(Tensorial) Group Field Theories: theories of a field $\varphi : G^d \to \mathbb{C}$ defined on *d* copies of a group manifold *G*. d is the dimension of the "spacetime to be" (d = 4)and G is the local gauge group of gravity, $G = SL(2, \mathbb{C})$ or, in many applications, G = SU(2).

Kinematics

Boundary states are d-1-simplices decorated with group theoretic data:

- Appropriate (geometricity) constraints allow the simplicial interpretation.
- ► Group (Lie algebra) variables associated to discretized gravitational quantities. H_{1-P}

(Tensorial) Group Field Theories: theories of a field $\varphi : G^d \to \mathbb{C}$ defined on *d* copies of a group manifold *G*.

Kinematics

Boundary states are d - 1-simplices decorated with group theoretic data:

- Appropriate (geometricity) constraints allow the simplicial interpretation.
- ► Group (Lie algebra) variables associated to discretized gravitational quantities. H_{1-p}

Dynamics

 S_{GFT} obtained by comparing Z_{GFT} with simplicial gravity path integral.

$$Z_{\mathsf{GFT}} = \sum_{\Gamma} w_{\Gamma}(\{\lambda_{\gamma}\}) A_{\Gamma}$$

d is the dimension of the "spacetime to be" (d = 4)

and G is the local gauge group of gravity.

 $G = SL(2, \mathbb{C})$ or, in many applications, G = SU(2).

(Tensorial) Group Field Theories: theories of a field $\varphi : G^d \to \mathbb{C}$ defined on *d* copies of a group manifold *G*.

Kinematics

Boundary states are d - 1-simplices decorated with group theoretic data:

- Appropriate (geometricity) constraints allow the simplicial interpretation.
- ► Group (Lie algebra) variables associated to discretized gravitational quantities. H_{1-p}

Dynamics

 S_{GFT} obtained by comparing Z_{GFT} with simplicial gravity path integral.

- Non-local and combinatorial interactions guarantee the gluing of d - 1-simplices into d-simplices.
- Γ are dual to spacetime triangulations.

$$Z_{\rm GFT} = \sum_{\Gamma} w_{\Gamma}(\{\lambda_{\gamma}\})A_{\Gamma}$$

d is the dimension of the "spacetime to be" (d = 4)

and G is the local gauge group of gravity.

 $G = SL(2, \mathbb{C})$ or, in many applications, G = SU(2).

(Tensorial) Group Field Theories: theories of a field $\varphi : G^d \to \mathbb{C}$ defined on *d* copies of a group manifold *G*.

Kinematics

Boundary states are d - 1-simplices decorated with group theoretic data:

- Appropriate (geometricity) constraints allow the simplicial interpretation.
- ► Group (Lie algebra) variables associated to discretized gravitational quantities. H_{1-p}

Dynamics

 S_{GFT} obtained by comparing Z_{GFT} with simplicial gravity path integral.

- Non-local and combinatorial interactions guarantee the gluing of d - 1-simplices into d-simplices.
- Γ are dual to spacetime triangulations.

GFTs are QFTs of atoms of spacetime.

$$Z_{\mathsf{GFT}} = \sum_{\Gamma} w_{\Gamma}(\{\lambda_{\gamma}\})A_{\Gamma}$$

d is the dimension of the "spacetime to be" (d = 4)

and G is the local gauge group of gravity.

 $G = SL(2, \mathbb{C})$ or, in many applications, G = SU(2).

(Tensorial) Group Field Theories: theories of a field $\varphi : G^d \times \mathbb{R}^{d_1} \to \mathbb{C}$ defined on the product of G^d and \mathbb{R}^{d_1} . $\begin{array}{l} d \mbox{ is the dimension of the "spacetime to be" } (d=4) \\ \mbox{ and } G \mbox{ is the local gauge group of gravity,} \\ G={\rm SL}(2,\mathbb{C}) \mbox{ or, in many applications, } G={\rm SU}(2). \end{array}$

Kinematics

Boundary states are d-1-simplices decorated with quantum geometric and scalar data:

Li, Oriti, Zhang 1701.08719; Oriti 0912.2441; Gielen, Oriti 1311.1238; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Sindoni 1602.08104; ...

(Tensorial) Group Field Theories: theories of a field $\varphi : G^d \times \mathbb{R}^{d_1} \to \mathbb{C}$ defined on the product of G^d and \mathbb{R}^{d_1} . d is the dimension of the "spacetime to be" (d = 4)and G is the local gauge group of gravity, $G = SL(2, \mathbb{C})$ or, in many applications, G = SU(2).

Kinematics

Boundary states are d - 1-simplices decorated with quantum geometric and scalar data:

- Geometricity constraints imposed analogously as before.
- Scalar field discretized on each *d*-simplex: each *d* − 1-simplex composing it carries values *x* ∈ ℝ^d.

Li, Oriti, Zhang 1701.08719; Oriti 0912.2441; Gielen, Oriti 1311.1238; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Sindoni 1602.08104; ...

(Tensorial) Group Field Theories: theories of a field $\varphi : G^d \times \mathbb{R}^{d_1} \to \mathbb{C}$ defined on the product of G^d and \mathbb{R}^{d_1} . d is the dimension of the "spacetime to be" (d = 4)and G is the local gauge group of gravity, $G = SL(2, \mathbb{C})$ or, in many applications, G = SU(2).

Kinematics

Boundary states are d - 1-simplices decorated with quantum geometric and scalar data:

- Geometricity constraints imposed analogously as before.
- Scalar field discretized on each *d*-simplex: each *d* − 1-simplex composing it carries values *x* ∈ ℝ^d.

Dynamics

 S_{GFT} obtained by comparing Z_{GFT} with simplicial gravity + scalar fields path integral.

- Geometric data enter the action in a non-local and combinatorial fashion.
- Scalar field data are local in interactions.
- ▶ For minimally coupled, free, massless scalars:

Intermezzo: the QG perspective on Cosmology

The QG perspective on Cosmology

Ashtekar, Kaminski, Lewandowski 0901.0933; Agullo, Ashtekar, Nelson 1302.0254; Gielen, Oriti 1709.01095; Gerhart, Oriti, Wilson-Ewing 1805.03099; ...

Challenges from the QG perspective:

- How to define (in)homogeneity?
- How to extract macroscopic dynamics?
- How to construct cosmological geometries?

Challenges from the QG perspective:

- How to define (in)homogeneity?
- How to extract macroscopic dynamics?
- How to construct cosmological geometries?

Ashtekar, Kaminski, Lewandowski 0901.0933; Agullo, Ashtekar, Nelson 1302.0254; Gielen, Oriti 1709.01095; Gerhart, Oriti, Wilson-Ewing 1805.03099; ...

Relational description

Ashtekar, Kaminski, Lewandowski 0901.0933; Agullo, Ashtekar, Nelson 1302.0254; Gielen, Oriti 1709.01095; Gerhart, Oriti, Wilson-Ewing 1805.03099; ...

(T)GFT and Emergent Cosmology

Homogeneous cosmologies from (T)GFT condensates

Simplest collective behavior: macroscopic σ dynamics well described in the mean-field approx.

$$|\sigma
angle = \mathcal{N}_{\sigma} \exp\left[\int \mathrm{d}^{d_{l}}\chi \int \mathrm{d}g_{a}\,\sigma(g_{a},\chi^{lpha})\hat{\varphi}^{\dagger}(g_{a},\chi^{lpha})
ight]|0
angle$$

Collective states

LM, Oriti 2008.02774; LM, Oriti 2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Oriti, Sindoni 1311.1238; Gielen 1404.2944;

Simplest collective behavior: macroscopic σ dynamics well described in the mean-field approx. **Collective states**

$$|\sigma
angle = \mathcal{N}_{\sigma} \exp\left[\int \mathrm{d}^{d_{l}}\chi \int \mathrm{d}g_{\mathfrak{s}} \,\sigma(g_{\mathfrak{s}},\chi^{lpha})\hat{arphi}^{\dagger}(g_{\mathfrak{s}},\chi^{lpha})
ight]|0
angle$$

- Assuming $\sigma(g_a, \cdot) = \sigma(hg_ah', \cdot), \mathcal{D} = GL(3)/O(3) \times \mathbb{R}^{d_l}$:
- \mathcal{D} = space of spatial geometries + matter at a point.
- If χ^{μ} , $\mu = 0, \ldots, d-1$ constitute a matter ref. frame:

 $\sigma(g_a, \chi'; \chi^{\mu}) \sim \text{distrib. of}$ spatial geometries and matter at χ^{μ} .

LM, Oriti 2008.02774; LM, Oriti 2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Oriti, Sindoni 1311.1238; Gielen 1404.2944;

Simplest collective behavior: macroscopic σ dynamics well described in the mean-field approx. **Collective states**

$$|\sigma
angle = \mathcal{N}_{\sigma} \exp\left[\int \mathrm{d}^{d_{l}}\chi \int \mathrm{d}g_{s} \,\sigma(g_{s},\chi^{lpha})\hat{arphi}^{\dagger}(g_{s},\chi^{lpha})
ight]|0
angle$$

- Assuming $\sigma(g_a, \cdot) = \sigma(hg_a h', \cdot), \mathcal{D} = GL(3)/O(3) \times \mathbb{R}^{d_l}$:
- $\mathcal{D} =$ space of spatial geometries + matter at a point.
- If χ^{μ} , $\mu = 0, \ldots, d-1$ constitute a matter ref. frame:

 $\sigma(g_a, \chi'; \chi^{\mu}) \sim \text{distrib. of}$ spatial geometries and matter at χ^{μ} .

Condensate Peaked States

• If σ is peaked on $\chi^{\mu} \simeq x^{\mu}$, $|\sigma\rangle_{\star}$ encodes relational info. about spatial geometry + matter at x^{μ} .

 $\sigma = (\text{fixed peaking function } \eta) \times (\text{dynamically determined reduced wavefunction } \tilde{\sigma})$

Relational strategy implemented at an effective level on "hydrodynamic" (averaged) quantities. ►

LM, Oriti 2008.02774; LM, Oriti 2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Oriti, Sindoni 1311.1238; Gielen 1404.2944;

Relationality

Simplest collective behavior: macroscopic σ dynamics well described in the mean-field approx.

$$|\sigma
angle = \mathcal{N}_{\sigma} \exp\left[\int \mathrm{d}^{d_{l}}\chi \int \mathrm{d}g_{s} \,\sigma(g_{s},\chi^{lpha})\hat{arphi}^{\dagger}(g_{s},\chi^{lpha})
ight]|0
angle$$

- Assuming $\sigma(g_a, \cdot) = \sigma(hg_ah', \cdot)$, $\mathcal{D} = GL(3)/O(3) \times \mathbb{R}^{d_l}$:
- $\mathcal{D} =$ space of spatial geometries + matter at a point.
- If χ^{μ} , $\mu = 0, \ldots, d-1$ constitute a matter ref. frame:

```
\sigma(g_a, \chi'; \chi^{\mu}) \sim \text{distrib. of}
spatial geometries and
matter at \chi^{\mu}.
```

Condensate Peaked States

• If σ is peaked on $\chi^{\mu} \simeq x^{\mu}$, $|\sigma\rangle_x$ encodes relational info. about spatial geometry + matter at x^{μ} .

 $\sigma = (\text{fixed peaking function } \eta) \times (\text{dynamically determined reduced wavefunction } \tilde{\sigma})$

Relational strategy implemented at an effective level on "hydrodynamic" (averaged) quantities.

Spatial relational homogeneity: σ depends on a single "clock" scalar field χ^0 (D = minisuperspace + homogeneous massless free clock)

LM, Oriti 2008.02774; LM, Oriti 2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Oriti, Sindoni 1311.1238; Gielen 1404.2944;

Collective states

Relationality

Mean-field approximation: A non-linear and non-local extension of QC

$$\left\langle \frac{\delta S[\hat{\varphi}, \hat{\varphi}^{\dagger}]}{\delta \hat{\varphi}(g_a, x^0)} \right\rangle_{\sigma_{x^0}} = \int \mathrm{d} h_a \int \mathrm{d} \chi \, \mathcal{K}(g_a, h_a, (x^0 - \chi)^2) \sigma_{x^0}(h_a, \chi) + \lambda \frac{\delta V[\varphi, \varphi^*]}{\delta \varphi^*(g_a, x^0)} \bigg|_{\varphi = \sigma_{x^0}} = 0 \,.$$

 Non-localities present in geometric (g_a) and pre-matter (χ) variables. • Non-linearities prevent any quantum-mechanical interpretation for σ (no superposition principle).

Mean-field approximation: A non-linear and non-local extension of QC

$$\left\langle \frac{\delta S[\hat{\varphi}, \hat{\varphi}^{\dagger}]}{\delta \hat{\varphi}(g_{a}, x^{0})} \right\rangle_{\sigma_{x^{0}}} = \int \mathrm{d}h_{a} \int \mathrm{d}\chi \, \mathcal{K}(g_{a}, h_{a}, (x^{0} - \chi)^{2}) \sigma_{x^{0}}(h_{a}, \chi) + \lambda \frac{\delta V[\varphi, \varphi^{*}]}{\delta \varphi^{*}(g_{a}, x^{0})} \bigg|_{\varphi = \sigma_{x^{0}}} = 0 \,.$$

 Non-localities present in geometric (g_a) and pre-matter (χ) variables. Non-linearities prevent any quantum-mechanical interpretation for σ (no superposition principle).

 $\sigma \neq$ Wavefunction of the Universe (though they share the same domain)

Mean-field approximation: A non-linear and non-local extension of QC

$$\left\langle \frac{\delta S[\hat{\varphi}, \hat{\varphi}^{\dagger}]}{\delta \hat{\varphi}(g_a, x^0)} \right\rangle_{\sigma_{x^0}} = \int \mathrm{d} h_a \int \mathrm{d} \chi \, \mathcal{K}(g_a, h_a, (x^0 - \chi)^2) \sigma_{x^0}(h_a, \chi) + \lambda \frac{\delta V[\varphi, \varphi^*]}{\delta \varphi^*(g_a, x^0)} \bigg|_{\varphi = \sigma_{x^0}} = 0 \,.$$

- Non-localities present in geometric (g_a) and pre-matter (χ) variables.
- Non-linearities prevent any quantum-mechanical interpretation for σ (no superposition principle).

 $\sigma \neq$ Wavefunction of the Universe (though they share the same domain)

Only statistical interpretation of σ, as a distribution producing observable averages.

Mean-field approximation: A non-linear and non-local extension of QC

$$\left\langle \frac{\delta S[\hat{\varphi}, \hat{\varphi}^{\dagger}]}{\delta \hat{\varphi}(g_a, x^0)} \right\rangle_{\sigma_{x^0}} = \int \mathrm{d} h_a \int \mathrm{d} \chi \, \mathcal{K}(g_a, h_a, (x^0 - \chi)^2) \sigma_{x^0}(h_a, \chi) + \lambda \frac{\delta V[\varphi, \varphi^*]}{\delta \varphi^*(g_a, x^0)} \bigg|_{\varphi = \sigma_{x^0}} = 0 \,.$$

• Non-localities present in geometric (g_a) and pre-matter (χ) variables. • Non-linearities prevent any quantum-mechanical interpretation for σ (no superposition principle).

 $\sigma \neq$ Wavefunction of the Universe (though they share the same domain)

Only statistical interpretation of σ, as a distribution producing observable averages.

Working approximations

Mesoscopic regime: large N but negligible interactions.
 Linearized dynamics.

LM, Oriti 2008.02774; LM, Oriti 2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Pithis 2112.00091; ...

σ-hydrodynan

Mean-field approximation: A non-linear and non-local extension of QC

$$\left\langle \frac{\delta S[\hat{\varphi}, \hat{\varphi}^{\dagger}]}{\delta \hat{\varphi}(g_{a}, x^{0})} \right\rangle_{\sigma_{x^{0}}} = \int \mathrm{d}h_{a} \int \mathrm{d}\chi \, \mathcal{K}(g_{a}, h_{a}, (x^{0} - \chi)^{2}) \sigma_{x^{0}}(h_{a}, \chi) + \lambda \frac{\delta V[\varphi, \varphi^{*}]}{\delta \varphi^{*}(g_{a}, x^{0})} \bigg|_{\varphi = \sigma_{x^{0}}} = 0 \,.$$

- Non-localities present in geometric (g_a) and pre-matter (χ) variables.
- Non-linearities prevent any quantum-mechanical interpretation for σ (no superposition principle).

 $\sigma \neq$ Wavefunction of the Universe (though they share the same domain)

Only statistical interpretation of σ, as a distribution producing observable averages.

Working approximations

- Mesoscopic regime: large N but negligible interactions.
- Hydrodynamic truncation of kinetic kernel due to peaking properties.
- Linearized dynamics.
- Differential equation in x^0 .

Mean-field approximation: A non-linear and non-local extension of QC

$$\left\langle \frac{\delta S[\hat{\varphi}, \hat{\varphi}^{\dagger}]}{\delta \hat{\varphi}(g_{a}, x^{0})} \right\rangle_{\sigma_{X^{0}}} = \int \mathrm{d}h_{a} \int \mathrm{d}\chi \, \mathcal{K}(g_{a}, h_{a}, (x^{0} - \chi)^{2}) \sigma_{x^{0}}(h_{a}, \chi) + \lambda \frac{\delta V[\varphi, \varphi^{*}]}{\delta \varphi^{*}(g_{a}, x^{0})} \bigg|_{\varphi = \sigma_{X^{0}}} = 0 \,.$$

- Non-localities present in geometric (g_a) and pre-matter (χ) variables.
- Non-linearities prevent any quantum-mechanical interpretation for σ (no superposition principle).

 $\sigma \neq$ Wavefunction of the Universe (though they share the same domain)

Only statistical interpretation of σ, as a distribution producing observable averages.

Working approximations

- Mesoscopic regime: large N but negligible interactions.
- Hydrodynamic truncation of kinetic kernel due to peaking properties.
- Isotropy: $\tilde{\sigma}_{\upsilon} \equiv \rho_{\upsilon} e^{i\theta_{\upsilon}}$ fundamental variables, with

• $v = \rho \in \mathbb{R}$ for SL(2, \mathbb{C}) (extended BC).

- Linearized dynamics.
- Differential equation in x^0 .
- Localization wrt. v (in EPRL and extended BC models).

LM, Oriti 2008.02774; LM, Oriti 2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Pithis 2112.00091; ...

Simplified σ -dynamics

Mean-field approximation: A non-linear and non-local extension of QC

$$\left\langle \frac{\delta S[\hat{\varphi}, \hat{\varphi}^{\dagger}]}{\delta \hat{\varphi}(g_{a}, x^{0})} \right\rangle_{\sigma_{X^{0}}} = \int \mathrm{d}h_{a} \int \mathrm{d}\chi \, \mathcal{K}(g_{a}, h_{a}, (x^{0} - \chi)^{2}) \sigma_{x^{0}}(h_{a}, \chi) + \lambda \frac{\delta V[\varphi, \varphi^{*}]}{\delta \varphi^{*}(g_{a}, x^{0})} \bigg|_{\varphi = \sigma_{X^{0}}} = 0 \,.$$

- Non-localities present in geometric (g_a) and pre-matter (χ) variables.
- Non-linearities prevent any quantum-mechanical interpretation for σ (no superposition principle).

 $\sigma \neq$ Wavefunction of the Universe (though they share the same domain)

Only statistical interpretation of σ, as a distribution producing observable averages.

Working approximations

- Mesoscopic regime: large N but negligible interactions.
- Hydrodynamic truncation of kinetic kernel due to peaking properties.
- Isotropy: $\tilde{\sigma}_{\upsilon} \equiv \rho_{\upsilon} e^{i\theta_{\upsilon}}$ fundamental variables, with

• $v = \rho \in \mathbb{R}$ for SL(2, \mathbb{C}) (extended BC).

- Linearized dynamics.
- Differential equation in x^0 .
- Localization wrt. v (in EPRL and extended BC models).

 $\tilde{\sigma}_{\upsilon}^{\prime\prime} - 2i\tilde{\pi}_0 \tilde{\sigma}_{\upsilon}^{\prime} - E_{\upsilon}^2 \tilde{\sigma} = 0$

LM, Oriti 2008.02774; LM, Oriti 2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Pithis 2112.00091; ...

(T)GFT and Emergent Cosmology

 $\begin{array}{l} \mbox{Spatial relational homogeneity:}\\ \sigma \mbox{ depends on a single "clock" scalar field } \chi^0\\ (\mathcal{D} = \mbox{minisuperspace} + \mbox{clock}) \end{array}$

Spatial relational homogeneity: σ depends on a single "clock" scalar field χ^0 (D = minisuperspace + clock)

Collective Observables

Number, volume (determined e.g. by the mapping with LQG) and matter operators (notation: $(\cdot, \cdot) = \int d\chi^0 dg_a$):

$\hat{N}=(\hat{arphi}^{\dagger},\hat{arphi})$	$\hat{m{V}}=(\hat{arphi}^{\dagger},m{V}[\hat{arphi}])$
$\hat{X}^{0}=\left(\hat{arphi}^{\dagger},\chi^{0}\hat{arphi} ight)$	$\hat{\Pi}^0 = -i(\hat{arphi}^\dagger,\partial_0\hat{arphi})$

• Observables \leftrightarrow collective operators on Fock space.

 $\begin{array}{l} \mbox{Spatial relational homogeneity:}\\ \sigma \mbox{ depends on a single "clock" scalar field } \chi^0\\ (\mathcal{D} = \mbox{minisuperspace} + \mbox{clock}) \end{array}$

Collective Observables

Number, volume (determined e.g. by the mapping with LQG) and matter operators (notation: $(\cdot, \cdot) = \int d\chi^0 dg_a$):

$$\begin{split} \hat{N} &= (\hat{\varphi}^{\dagger}, \hat{\varphi}) & \hat{V} &= (\hat{\varphi}^{\dagger}, V[\hat{\varphi}]) \\ \hat{\chi}^{0} &= \left(\hat{\varphi}^{\dagger}, \chi^{0} \hat{\varphi}\right) & \hat{\Pi}^{0} &= -i(\hat{\varphi}^{\dagger}, \partial_{0} \hat{\varphi}) \end{split}$$

- $\blacktriangleright \ \ Observables \leftrightarrow collective \ operators \ on \ \ Fock \ space.$
- ◊ (Ô)_{σ_{x⁰}} = O[õ]|_{χ⁰=x⁰} hydrodynamic variables: functionals of õ localized at x⁰.

 $\begin{array}{l} \mbox{Spatial relational homogeneity:}\\ \sigma \mbox{ depends on a single "clock" scalar field } \chi^0\\ (\mathcal{D} = \mbox{minisuperspace} + \mbox{clock}) \end{array}$

Collective Observables

Number, volume (determined e.g. by the mapping with LQG) and matter operators (notation: $(\cdot, \cdot) = \int d\chi^0 dg_a$):

$$\begin{split} \hat{N} &= (\hat{\varphi}^{\dagger}, \hat{\varphi}) & \hat{V} &= (\hat{\varphi}^{\dagger}, V[\hat{\varphi}]) \\ \hat{X}^{0} &= \left(\hat{\varphi}^{\dagger}, \chi^{0} \hat{\varphi}\right) & \hat{\Pi}^{0} &= -i(\hat{\varphi}^{\dagger}, \partial_{0} \hat{\varphi}) \end{split}$$

- Observables \leftrightarrow collective operators on Fock space.
- ◊ (Ô)_{σ_{x⁰}} = O[σ̃]|_{χ⁰=x⁰} hydrodynamic variables: functionals of σ̃ localized at x⁰.

Oriti 2008.02774; LM, Oriti 2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Pithis 2112.00091;

(T)GFT and Emergent Cosmology

Relationality

• Averaged evolution wrt x^0 is physical:

Intensive
$$\langle \hat{\chi} \rangle_{\sigma_{\chi^0}} \equiv \langle \hat{\chi} \rangle_{\sigma_{\chi^0}} / \langle \hat{N} \rangle_{\sigma_{\chi^0}} \simeq x^0$$

- Emergent effective relational description:
 - Small clock quantum fluctuations.
 - Effective Hamiltonian H<sub>σ_{x⁰} ≃ ⟨Π̂⁰⟩_{σ_{x⁰}}.
 </sub>

Spatial relational homogeneity: σ depends on a single "clock" scalar field χ^0 (D = minisuperspace + clock)

Collective Observables

Number, volume (determined e.g. by the mapping with LQG) and matter operators (notation: $(\cdot, \cdot) = \int d\chi^0 dg_a$):

$$\begin{split} \hat{N} &= (\hat{\varphi}^{\dagger}, \hat{\varphi}) & \hat{V} &= (\hat{\varphi}^{\dagger}, V[\hat{\varphi}]) \\ \hat{\chi}^{0} &= \left(\hat{\varphi}^{\dagger}, \chi^{0} \hat{\varphi}\right) & \hat{\Pi}^{0} &= -i(\hat{\varphi}^{\dagger}, \partial_{0} \hat{\varphi}) \end{split}$$

• Observables \leftrightarrow collective operators on Fock space.

Relationality

• Averaged evolution wrt x^0 is physical:

$$\left<\hat{\chi}\right>_{\sigma_{X^0}} \equiv \left<\hat{X}\right>_{\sigma_{X^0}} / \left<\hat{N}\right>_{\sigma_{X^0}} \simeq x^0$$

- Emergent effective relational description:
 - Small clock quantum fluctuations.
 - Effective Hamiltonian $H_{\sigma_{X^0}} \simeq \langle \hat{\Pi}^0 \rangle_{\sigma_{y^0}}$.

◊ (Ô)_{σ_{x⁰}} = O[σ̃]|_{χ⁰=x⁰} hydrodynamic variables: functionals of σ̃ localized at x⁰.

Wavefunction isotropy
$$\begin{split} \langle \hat{V} \rangle_{\sigma_X^0} &= \sum_{\upsilon} V_{\upsilon} |\tilde{\sigma}_{\upsilon}|^2 (x^0) \\ \langle \hat{N} \rangle_{\sigma_X^0} &= \sum_{\upsilon} |\tilde{\sigma}_{\upsilon}|^2 (x^0) \end{split}$$

Oriti 2008.02774; LM, Oriti 2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Pithis 2112.00091;

Luca Marchetti

(T)GFT and Emergent Cosmology

Mean-field approximation

- ▶ Mesoscopic regime: large *N* but negligible interactions.
- Hydrodynamic approx. of kinetic kernel.
- Isotropy: $\tilde{\sigma}_{\upsilon} \equiv \rho_{\upsilon} e^{i\theta_{\upsilon}}$ fundamental variables.

$$\tilde{\sigma}_{\upsilon}^{\prime\prime}-2i\tilde{\pi}_{0}\tilde{\sigma}_{\upsilon}^{\prime}-E_{\upsilon}^{2}\tilde{\sigma}=0.$$

Mean-field approximation

- ▶ Mesoscopic regime: large *N* but negligible interactions.
- Hydrodynamic approx. of kinetic kernel.
- Isotropy: $\tilde{\sigma}_{\upsilon} \equiv \rho_{\upsilon} e^{i\theta_{\upsilon}}$ fundamental variables.

$$\tilde{\sigma}_{\upsilon}^{\prime\prime}-2i\tilde{\pi}_{0}\tilde{\sigma}_{\upsilon}^{\prime}-E_{\upsilon}^{2}\tilde{\sigma}=0.$$

Effective relational Friedmann equations $\left(\frac{V'}{3V}\right)^{2} \simeq \left(\frac{2 \not \! \pm_{\upsilon} V_{\upsilon} \rho_{\upsilon} \operatorname{sgn}(\rho'_{\upsilon}) \sqrt{\mathcal{E}_{\upsilon} - Q_{\upsilon}^{2} / \rho_{\upsilon}^{2} + \mu_{\upsilon}^{2} \rho_{\upsilon}^{2}}}{3 \not \! \pm_{\upsilon} V_{\upsilon} \rho_{\upsilon}^{2}}\right)^{2} \quad \frac{V''}{V} \simeq \frac{2 \not \! \pm_{\upsilon} V_{\upsilon} \left[\mathcal{E}_{\upsilon} + 2\mu_{\upsilon}^{2} \rho_{\upsilon}^{2}\right]}{\not \! \pm_{\upsilon} V_{\upsilon} \rho_{\upsilon}^{2}}$

Mean-field approximation

- ▶ Mesoscopic regime: large *N* but negligible interactions.
- Hydrodynamic approx. of kinetic kernel.
- Isotropy: $\tilde{\sigma}_{\upsilon} \equiv \rho_{\upsilon} e^{i\theta_{\upsilon}}$ fundamental variables.

$$\tilde{\sigma}_{\upsilon}^{\prime\prime}-2i\tilde{\pi}_{0}\tilde{\sigma}_{\upsilon}^{\prime}-E_{\upsilon}^{2}\tilde{\sigma}=0.$$

Effective relational Friedmann equations $\left(\frac{V'}{3V}\right)^{2} \simeq \left(\frac{2 \oint_{\upsilon} V_{\upsilon} \rho_{\upsilon} \mathsf{sgn}(\rho_{\upsilon}') \sqrt{\mathcal{E}_{\upsilon} - Q_{\upsilon}^{2}/\rho_{\upsilon}^{2} + \mu_{\upsilon}^{2}\rho_{\upsilon}^{2}}}{3 \oint_{\upsilon} V_{\upsilon} \rho_{\upsilon}^{2}}\right)^{2} \quad \frac{V''}{V} \simeq \frac{2 \oint_{\upsilon} V_{\upsilon} \left[\mathcal{E}_{\upsilon} + 2\mu_{\upsilon}^{2}\rho_{\upsilon}^{2}\right]}{\oint_{\upsilon} V_{\upsilon} \rho_{\upsilon}^{2}}$

Classical limit (large ρ_v s, late times)

• If μ_v^2 is mildly dependent on v (or one v is dominating) and equal to $3\pi G$

$$(V'/3V)^2 \simeq 4\pi G/3 \longrightarrow \text{flat FLRW}$$

 Quantum fluctuations on clock and geometric variables are under control.

Mean-field approximation

- ▶ Mesoscopic regime: large *N* but negligible interactions.
- Hydrodynamic approx. of kinetic kernel.
- Isotropy: $\tilde{\sigma}_{\upsilon} \equiv \rho_{\upsilon} e^{i\theta_{\upsilon}}$ fundamental variables.

$$\tilde{\sigma}_{\upsilon}^{\prime\prime}-2i\tilde{\pi}_{0}\tilde{\sigma}_{\upsilon}^{\prime}-E_{\upsilon}^{2}\tilde{\sigma}=0.$$

Effective relational Friedmann equations

$$\left(\frac{V'}{3V}\right)^2 \simeq \left(\frac{2 \, \sharp_\upsilon \, V_\upsilon \rho_\upsilon \operatorname{sgn}(\rho'_\upsilon) \sqrt{\mathcal{E}_\upsilon - Q_\upsilon^2 / \rho_\upsilon^2 + \mu_\upsilon^2 \rho_\upsilon^2}}{3 \, \sharp_\upsilon \, V_\upsilon \rho_\upsilon^2}\right)^2 \quad \frac{V''}{V} \simeq \frac{2 \, \sharp_\upsilon \, V_\upsilon \left[\mathcal{E}_\upsilon + 2\mu_\upsilon^2 \rho_\upsilon^2\right]}{\sharp_\upsilon \, V_\upsilon \rho_\upsilon^2} \quad$$

Classical limit (large ρ_v s, late times)

• If μ_v^2 is mildly dependent on v (or one v is dominating) and equal to $3\pi G$

 $(V'/3V)^2 \simeq 4\pi G/3 \longrightarrow \text{flat FLRW}$

 Quantum fluctuations on clock and geometric variables are under control.

Bounce

- A non-zero volume bounce happens for a large range of initial conditions (at least one Q_v ≠ 0 or one E_v < 0).</p>
- The average singularity resolution may still be spoiled by quantum effects on geometric and clock variables.

LM, Oriti 2008.02774; LM, Oriti 2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Pithis 2112.00091; ...

Luca Marchetti

(T)GFT and Emergent Cosmology

Exploring the physics of (T)GFT condensates

Physics of (T)GFT cosmology

Geometric acceleration from interactions

De Cesare, Oriti, Pithis 1606.00352; LM, Oriti 2112.12677; Oriti, Pang 2105.03751; Ladstätter, LM, Oriti (to appear); Jercher, LM, Pithis (to appear)

Physics of (T)GFT cosmology

Geometric acceleration from interactions

Early times: geometric inflation

Geometric inflation from QG interactions.

For some models bottom-up natural and slow-roll.

De Cesare, Oriti, Pithis 1606.00352; LM, Oriti 2112.12677; Oriti, Pang 2105.03751; Ladstätter, LM, Oriti (to appear); Jercher, LM, Pithis (to appear)
Geometric acceleration from interactions

Early times: geometric inflation

Geometric inflation from QG interactions.

For some models bottom-up natural and slow-roll.

Late times: phantom dark energy

 Phantom dark energy generated by QG effects (no field theoretic issue).

Geometric acceleration from interactions

Early times: geometric inflation

- Geometric inflation from QG interactions.
- For some models bottom-up natural and slow-roll.
- Comparison with observations?

Late times: phantom dark energy

- ✓ Phantom dark energy generated by QG effects (no field theoretic issue).
- Comparison with observations?

Geometric acceleration from interactions

Early times: geometric inflation

- Geometric inflation from QG interactions.
- For some models bottom-up natural and slow-roll.
- Comparison with observations?

Late times: phantom dark energy

- ✓ Phantom dark energy generated by QG effects (no field theoretic issue).
- Comparison with observations?

Including more realistic matter: running couplings

Geometric acceleration from interactions

Early times: geometric inflation

- Geometric inflation from QG interactions.
- For some models bottom-up natural and slow-roll.
- Comparison with observations?

Including more realistic matter: running couplings

 Matching with GR requires the macroscopic constants (including G) to run with time.

Late times: phantom dark energy

- Phantom dark energy generated by QG effects (no field theoretic issue).
- Comparison with observations?

Connection with asymptotic safety?

- Classical system: gravity + 5 m.c.m.f. scalar fields. 4 of which constitute the relational frame.
- Perturbations at the level of σ.
- Matching with GR at late times only for super-horizon modes.

- fields, 4 of which constitute the relational frame.
- Perturbations at the level of σ.
- Matching with GR at late times only for super-horizon modes.

Why the mismatch?

Perturbations at the level of σ.

super-horizon modes.

Matching with GR at late times only for

Why the mismatch?

- Full relational frame requires quanta with different causal properties.
- Including quantum correlations substantially helps the matching.

De Cesare, Oriti, Pithis 1606.00352; LM, Oriti 2112.12677; Oriti, Pang 2105.03751; Ladstätter, LM, Oriti (to appear); Jercher, LM, Pithis (to appear)

- Perturbations at the level of σ.
- Matching with GR at late times only for super-horizon modes.

Why the mismatch?

- Full relational frame requires quanta with different causal properties.
- Including quantum correlations substantially helps the matching.

Geometry from quantum correlations!

De Cesare, Oriti, Pithis 1606.00352; LM, Oriti 2112.12677; Oriti, Pang 2105.03751; Ladstätter, LM, Oriti (to appear); Jercher, LM, Pithis (to appear)

Homogeneous, free

- Late times: FRLW flat classical dynamics.
- Early times: averaged quantum bounce.

Backup

Quite well understood from a classical perspective, less from a quantum perspective.

Isham 9210011; Rovelli Class. Quantum Grav. 8 297; Dittrich 0507106; Hoehn et al. 1912.00033 and 2007.00580; Tambornino 1109.0740; ...

Quite well understood from a classical perspective, less from a quantum perspective.

Notion of relationality can be classically encoded in relational observables:

- Take two phase space functions, f and T with $\{T, C_H\} \neq 0$ (T relational clock).
- The relational extension $F_{f,T}(\tau)$ of f encodes the value of f when T reads τ .
- Evolution in \(\tau\) is relational.
- *F_{f,T}(τ)* is a very complicated function, often written in series form.
- Applications only for (almost) deparametrizable systems, such as GR plus pressureless dust or massless scalar fields.

Isham 9210011; Rovelli Class. Quantum Grav. 8 297; Dittrich 0507106; Hoehn et al. 1912.00033 and 2007.00580; Tambornino 1109.0740; ...

Quite well understood from a classical perspective, less from a quantum perspective.

Classical	Quantum GR
Nextee of estate alter and the algorithm to all the	Disco compared first manufact than involvement

Notion of relationality can be classically encoded in relational observables:

- Take two phase space functions, f and T with $\{T, C_H\} \neq 0$ (T relational clock).
- The relational extension F_{f,T}(τ) of f encodes the value of f when T reads τ.
- Evolution in \(\tau\) is relational.
- *F_{f,T}(τ)* is a very complicated function, often written in series form.
- Applications only for (almost) deparametrizable systems, such as GR plus pressureless dust or massless scalar fields.

Dirac approach: first quantize, then implement relationality

- Perspective neutral approach: all variables are treated on the same footing.
- Poor control of the physical Hilbert space.

Isham 9210011; Rovelli Class. Quantum Grav. 8 297; Dittrich 0507106; Hoehn et al. 1912.00033 and 2007.00580; Tambornino 1109.0740; ...

Quite well understood from a classical perspective, less from a quantum perspective.

Classical	Quantum GR

Notion of relationality can be classically encoded in relational observables:

- ► Take two phase space functions, f and T with $\{T, C_H\} \neq 0$ (T relational clock).
- The relational extension $F_{f,T}(\tau)$ of f encodes the value of f when T reads τ .
- Evolution in \(\tau\) is relational.
- *F_{f,T}(τ)* is a very complicated function, often written in series form.
- Applications only for (almost) deparametrizable systems, such as GR plus pressureless dust or massless scalar fields.

Dirac approach: first quantize, then implement relationality

- Perspective neutral approach: all variables are treated on the same footing.
- Poor control of the physical Hilbert space.

Reduced phase space approach: first implment relationality, then quantize

- No quantum constraint to solve.
- Led to quantization of simple deparametrizable models (LQG).
- Not perspective neutral. Too complicated to implement in most of the cases.

Isham 9210011; Rovelli Class. Quantum Grav. 8 297; Dittrich 0507106; Hoehn et al. 1912.00033 and 2007.00580; Tambornino 1109.0740; ...

Relational strategy and emergent quantum gravity theories

- ▶ Well understood from a classical perspective, less from a quantum perspective.
- Difficulties especially relevant for emergent QG theories.

LM. Oriti 2008.02774: Giulini 0603087: Kuchar Int.J.Mod.Phys.D 20(2011): Isham 9210011: Rovelli Class. Quantum Grav. 8 297:

Relational strategy and emergent quantum gravity theories

- Fundamental d.o.f. are weakly related to spacetime quantities;
- Set of collective observables;
- The latter expected to emerge from the former when a continuum limit is taken.
- Coarse grained states or probability distributions.

The quantities whose evolution we want to describe relationally are the result of a coarse-graining of some fundamental d.o.f.

LM. Oriti 2008.02774: Giulini 0603087: Kuchar Int.J.Mod.Phvs.D 20(2011): Isham 9210011: Rovelli Class. Quantum Grav. 8 297:

Relational strategy and emergent quantum gravity theories

- ▶ Well understood from a classical perspective, less from a quantum perspective.
- Difficulties especially relevant for emergent QG theories.

 Fundamental d.o.f. are weakly related to spacetime quantities; The latter expected to emerge from the former when a continuum limit is taken. Set of collective observables; Coarse grained states or probability distributions. 	Microscopic pre-geo	Macroscopic proto-geo	
 The latter expected to emerge from the former when a continuum limit is taken. Coarse grained states or probability distributions. 	 Fundamental d.o.f. are weakly related to spacetime quantities; 	 Set of collective observables; 	
	 The latter expected to emerge from the former when a continuum limit is taken. 	 Coarse grained states or probability distributions. 	

The quantities whose evolution we want to describe relationally are the result of a coarse-graining of some fundamental d.o.f.

Effective approaches:

- Bypass most conceptual and technical difficulties;
- Relevant for observative purposes.

LM. Oriti 2008.02774: Giulini 0603087: Kuchar Int.J.Mod.Phvs.D 20(2011): Isham 9210011: Rovelli Class. Quantum Grav. 8 297:

Luca Marchetti

Emergent effective relational dynamics

LM, Oriti 2008.02774; Bojowald, Hoehn, Tsobanjan 1011.3040; Bojowald, Tsobanjan 0906.1772;

Luca Marchetti

Emergent effective relational dynamics

Concrete example: scalar field clock

Emergence

- Identify a class of states |Ψ⟩ which encode collective behavior and admit a continuum proto-geometric interpretation.
- Identify a set of collective observables:

LM, Oriti 2008.02774; Bojowald, Hoehn, Tsobanjan 1011.3040; Bojowald, Tsobanjan 0906.1772;

Emergent effective relational dynamics

Concrete example: scalar field clock

Emergence

- Identify a class of states |Ψ⟩ which encode collective behavior and admit a continuum proto-geometric interpretation.
- Identify a set of collective observables:

Effectivness

• It exists a "Hamiltonian" \hat{H} such that

$$rac{\mathrm{d}}{\mathrm{d}\langle\hat{\chi}\rangle_{\Psi}}\langle\hat{O}_{a}\rangle_{\Psi} = \langle [\hat{H},\hat{O}_{a}]\rangle_{\Psi} \ ,$$

and whose moments coincide with those of $\hat{\Pi}$.

$$\sigma_{\chi}^2 \ll 1$$
, $\sigma_{\chi}^2 \sim \langle \hat{N} \rangle_{\Psi}^{-1}$.

LM, Oriti 2008.02774; Bojowald, Hoehn, Tsobanjan 1011.3040; Bojowald, Tsobanjan 0906.1772;

Luca Marchetti