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The (T)GFT approach to QG

GFTs are QFTs of atoms of spacetime.

I Take seriously the idea of a microscopic structure of spacetime.

I Related to canonical and discrete path-integral approaches to QG.

I Physical insights from canonical approaches combined with

powerful field theoretic methods!

ciao

ciao Group Field Theory Quanta y

I GFT quanta are atoms of quantum spacetime, i.e.

d − 1-dimensional simplices.

I Data associated to a single quantum are geometric data of

a d − 1-simplex.

ciao Group Field Theory Processes

I GFT Feynman diagrams (QG processes) are associated to

d-dimensional triangulated manifolds.

I Data associated to QG processes are geometric data of

d-dimensional triangulated manifolds.

Oriti 0912.2441; Oriti 1110.5606; Oriti 1408.7112; Krajewski 1210.6257; Oriti 1807.04875; Gielen, Sindoni 1602.08104; . . .
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Group Field Theory Quanta
A
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(ciaoClassical tetrahedron

A Euclidean tetrahedron is described by 4 bivectors Ba ∈ ∧2R4, with

I Closure:
∑

a Ba = 0 (faces of the tetrahedron close).

I Simplicity: X · ?Ba = 0, i.e. Ba is simple: (B ∼ e ∧ e′).

BgB4Bg

B1

BgB2Bg

B3

•

(ciaoQuantum tetrahedron

I Using ∧2R4 ' spin(4) the face phase space is T ∗(Spin(4)) ∼ Spin(4)× spin(4).

I T ∗(Spin(4)) has a natural Poisson structure which can be canonically quantized.

I Htetra ⊂ ⊗4
a=1H∆a (subset defined by the imposition of constraints).

R
ep

s.

Lie algebra rep.

H∆a = L2(spin(4))

Lie group rep.

H∆a = L2(Spin(4))

Spin rep.

H∆a =
⊕

Ja
HJa

yG
ra

vi
ty

y

Discretized gravity

Loop Quantum Gravity

I Discretized Palatini gravity can be

written as constrained BF theory.

I B ∼ e ∧ e and g ∼ P expω.

I Fix the normal and reduce to SU(2).

Htetra = open spin-network space =
⊕
~j

[⊗4
a=1Hja ⊗ I

~j
]

Non-comm.

FT

Peter-Weyl

Theorem

Barbieri 9707010; Baez, Barrett 9903060; Baratin, Oriti 1002.4723; Guedes, Oriti, Raasakka 1301.7750; Gielen, Oriti 1004.5371; Oriti 1310.7786. . .
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A many-body theory for spacetime atoms

Tetrahedron wavefunction

ϕ(g1, . . . , g4)

(subject to constraints)

GFT field operator

ϕ̂(g1, . . . , g4)

(subject to constraints)

G
F

T
F

o
ck

sp
a

ce FGFT =
∞⊕
V=0

sym
[
H(1)

tetra ⊗H
(2)
tetra ⊗ . . .H

(V )
tetra

]
I FGFT generated by action of ϕ̂†(ga) on |0〉, with [ϕ̂(ga), ϕ̂†(g ′a )] = IG (ga, g

′
a ).

I HΓ ⊂ FGFT, HΓ space of states associated to connected simplicial complexes Γ.

I Generic quantum states do not correspond to connected simplicial lattices nor classical simplicial

geometries.

O
p

er
a

to
rs Volume operator V =

∫
dg (1)

a dg (2)
a V (g (1)

a , g (2)
a )ϕ̂†(g (1)

a )ϕ̂(g (2)
a ) =

∑
Ja

VJa ϕ̂
†
Ja
ϕ̂Ja .

I Generic second quantization prescription to build a m + n-body operator: sandwich matrix

elements between spin-network states between m powers of ϕ̂† and n powers of ϕ̂.

Many-body

Theory

Oriti 1310.7786; Gielen, Oriti 1407.8167; Gielen, Sindoni 1602.08104; Oriti, Sindoni, Wilson-Ewing 1602.05881; . . .
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Group Field Theory dynamics
G

F
T

a
ct

io
n

S[ϕ, ϕ̄] =

∫
dgaϕ̄(ga)K[ϕ](ga) +

∑
γ

λγ

nγ
Trγ [ϕ] + c.c. .

I Interaction terms are combinatorially non-local.

I Field arguments convoluted pairwise following the combinatorial

pattern dictated by the graph γ:

Trγ [ϕ] =

∫ nγ∏
i=1

dga
∏

(a,i ;b,j)

V(g (i)
a , g

(j)
b )

nγ∏
i=1

ϕ(g (i)
a ) .

g′4g′3g′2g′1

g1 g2 g3 g4

K y 7

g′9

g′6

g′2

g10

g′10
g′8

g′5
g′1

g1
g2

g3
g4

g′4
g5
g6
g7

g′7
g′3

g′8
g9

P
ar

ti
ti

o
n

fu
n

ct
io

n

Z [ϕ, ϕ̄] =
∑

Γ

wΓ({λγ})AΓ.

I Diagrams Γ = stranded diagrams dual to d-dimensional cellular complexes of arbitrary topology.

I Amplitudes AΓ = sums over group theoretic data associated to the cellular complex.

I K and V can be chosen to match the desired simplicial gravity path-integral.

yE
xa

m
p

le
y Boulatov model: ga ∈ SU(2), a = 1, 2, 3, K = δ(ga, gb), γ = .

∫ ∏
`

dg`
∏
f

δ

(∏
`∈∂f

g`

)
=

AΓ

=
∑
je

∏
e

de
∏
τ

{
jτ1 jτ2 jτ3
jτ4 jτ5 jτ6

}

3d gravity
on lattice
dual to Γ

Spinfoam ampli-
tude on lattice
dual to Γ

Oriti 1110.5606; Reisenberger, Rovelli 0002083; De Pietri, Petronio 0004045; Gurau 1006.0714; Baratin, Oriti 1002.4723; Finocchiaro, Oriti 1812.03550;
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The (T)GFT approach to quantum gravity

(Tensorial) Group Field Theories:

theories of a field ϕ : Gd → C defined
on d copies of a group manifold G .

d is the dimension of the “spacetime to be” (d = 4)

and G is the local gauge group of gravity,

G = SL(2,C) or, in many applications, G = SU(2).

ciao

ciao Kinematicsy

Boundary states are d − 1-simplices decorated with group theoretic data:

I Appropriate (geometricity) constraints allow the simplicial interpretation.

I Group (Lie algebra) variables associated to discretized gravitational quantities.

ciao Dynamics

SGFT obtained by comparing ZGFT with simplicial gravity path integral.

I Non-local and combinatorial interactions guarantee the

gluing of d − 1-simplices into d-simplices.

I Γ are dual to spacetime triangulations.

ZGFT =
∑

Γ

wΓ({λγ})AΓ

GFTs are QFTs of atoms of spacetime.

H1-p =

g1

g2

g3

g4

•

Oriti 0912.2441; Oriti 1408.7112; Krajewski 1210.6257; Gielen, Oriti 1311.1238; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Sindoni 1602.08104; . . .
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(T)GFT and matter: scalar fields

(Tensorial) Group Field Theories:

theories of a field ϕ : Gd × Rdl → C
defined on the product of Gd and Rdl .

d is the dimension of the “spacetime to be” (d = 4)

and G is the local gauge group of gravity,

G = SL(2,C) or, in many applications, G = SU(2).

ciao

ciao Kinematicsy

Boundary states are d − 1-simplices decorated with quantum geometric and scalar data:

I Geometricity constraints imposed analogously as before.

I Scalar field discretized on each d-simplex: each

d − 1-simplex composing it carries values χ ∈ Rdl .

ciao Dynamics

SGFT obtained by comparing ZGFT with simplicial gravity + scalar fields path integral.

I Geometric data enter the action in a non-local and

combinatorial fashion.

I Scalar field data are local in interactions.

I For minimally coupled, free, massless scalars:

K(ga, gb ; χ,χ′) = K(ga, gb ; |χ− χ
′|2)

V(g (1)
a , . . . , g (5)

a ,χ) = V(g (1)
a , . . . , g (5)

a )

H1-p =

g1

g2

g3

g4

•χ

Li, Oriti, Zhang 1701.08719; Oriti 0912.2441; Gielen, Oriti 1311.1238; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Sindoni 1602.08104; . . .
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Intermezzo: the QG perspective

on Cosmology



The QG perspective on Cosmology

Matter sector Initial conditions

Gravity sector

I Impact of singularity resolution on pert.?

I Is the evolution of pert. modified by QG effects?

I . . .

I Are these effects observable?

I Nature of dark matter?

I Singularity resolution?

I . . .

I Nature of dark energy?

I Geometric inflation?

I Is the vacuum state a QG

modified BD vacuum?

I . . .

I Are these effects observable?

yA
p

p
ro

xim
a

te
o

n
lyy

Challenges from the QG perspective:

I How to define (in)homogeneity?

I How to extract macroscopic dynamics?

I How to construct cosmological geometries?

I . . .

Relational description

Coarse-graining/

collective behavior

Ashtekar, Kaminski, Lewandowski 0901.0933; Agullo, Ashtekar, Nelson 1302.0254; Gielen, Oriti 1709.01095; Gerhart, Oriti, Wilson-Ewing 1805.03099; . . .
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QG condensates and peaked states
yC
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(ciao(T)GFT condensates

Simplest collective behavior: macroscopic σ dynamics well described in the mean-field approx.

|σ〉 = Nσ exp

[∫
d
dlχ

∫
dga σ(ga, χ

α)ϕ̂†(ga, χ
α)

]
|0〉

I Assuming σ(ga, ·) = σ(hgah
′
, ·), D = GL(3)/O(3)× Rdl :

I D = space of spatial geometries + matter at a point.

I If χµ, µ = 0, . . . , d − 1 constitute a matter ref. frame:

σ(ga, χ
I ;χµ) ∼ distrib. of

spatial geometries and

matter at χµ.

R
el

a
ti

o
n

a
lit

y

(ciaoCondensate Peaked States(

I If σ is peaked on χµ ' xµ, |σ〉x encodes relational info. about spatial geometry + matter at xµ.

σ = (fixed peaking function η)× (dynamically determined reduced wavefunction σ̃)

I Relational strategy implemented at an effective level on “hydrodynamic” (averaged) quantities.

Spatial relational homogeneity: σ depends on a single “clock” scalar field χ0

(D = minisuperspace + homogeneous massless free clock)

LM, Oriti 2008.02774; LM, Oriti 2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Oriti, Sindoni 1311.1238; Gielen 1404.2944;
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Mean-field approximation and QG hydrodynamics
σ

-h
yd

ro
d

yn
a

m
ic

s

(ciaoMean-field approximation: A non-linear and non-local extension of QC〈
δS[ϕ̂, ϕ̂†]

δϕ̂(ga, x0)

〉
σx0

=

∫
dha

∫
dχK(ga, ha, (x0 − χ)2)σx0 (ha, χ) + λ

δV [ϕ, ϕ∗]

δϕ∗(ga, x0)

∣∣∣∣
ϕ=σx0

= 0 .

I Non-localities present in geometric (ga)

and pre-matter (χ) variables.

I Non-linearities prevent any quantum-mechanical

interpretation for σ (no superposition principle).

σ 6= Wavefunction of the Universe (though they share the same domain)

I Only statistical interpretation of σ, as a distribution producing observable averages.

S
im

p
lifi

ed
σ

-d
yn

a
m

ic
s (ciaoWorking approximations(

I Mesoscopic regime: large N but negligible interactions.

I Hydrodynamic truncation of kinetic kernel due to peaking

properties.

I Isotropy: σ̃υ ≡ ρυe iθυ fundamental variables, with

• υ = j ∈ N/2 for SU(2) (EPRL-like);
• υ = ρ ∈ R for SL(2,C) (extended BC).

I Linearized dynamics.

I Differential equation in x0.

I Localization wrt. υ (in EPRL

and extended BC models).

σ̃
′′
υ − 2iπ̃0σ̃

′
υ − E 2

υσ̃ = 0

LM, Oriti 2008.02774; LM, Oriti 2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Pithis 2112.00091; . . .
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Cosmology from QG condensates: observables and relationality

Spatial relational homogeneity:

σ depends on a single “clock” scalar field χ0

(D = minisuperspace + clock)

Collective Observablesp

Number, volume (determined e.g. by the mapping with

LQG) and matter operators (notation: (·, ·) =

∫
dχ

0
dga):

N̂ = (ϕ̂†, ϕ̂) V̂ = (ϕ̂†,V [ϕ̂])

X̂ 0 =
(
ϕ̂
†
, χ

0
ϕ̂
)

Π̂
0

= −i(ϕ̂†, ∂0ϕ̂)

I Observables ↔ collective operators on Fock space.

Relationality

I Averaged evolution wrt x0 is physical:

〈χ̂〉σx0
≡ 〈X̂〉σx0

/ 〈N̂〉σx0
' x0

I Emergent effective relational description:

• Small clock quantum fluctuations.

• Effective Hamiltonian Hσx0 '〈Π̂0〉σx0
.

I 〈Ô〉σx0
= O[σ̃]|χ0=x0 hydrodynamic

variables: functionals of σ̃ localized at x0.

Wavefunction

isotropy

〈V̂ 〉σ0
x

=
∑∫

υ

Vυ|σ̃υ|2(x0)

〈N̂〉σ0
x

=
∑∫

υ

|σ̃υ|2(x0)

Oriti 2008.02774; LM, Oriti 2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Pithis 2112.00091;
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Spatial relational homogeneity:

σ depends on a single “clock” scalar field χ0

(D = minisuperspace + clock)

Collective Observablesp

Number, volume (determined e.g. by the mapping with

LQG) and matter operators (notation: (·, ·) =

∫
dχ

0
dga):

N̂ = (ϕ̂†, ϕ̂) V̂ = (ϕ̂†,V [ϕ̂])

X̂ 0 =
(
ϕ̂
†
, χ

0
ϕ̂
)

Π̂
0

= −i(ϕ̂†, ∂0ϕ̂)

I Observables ↔ collective operators on Fock space.

Relationality

I Averaged evolution wrt x0 is physical:

〈χ̂〉σx0
≡ 〈X̂〉σx0

/ 〈N̂〉σx0
' x0

I Emergent effective relational description:

• Small clock quantum fluctuations.

• Effective Hamiltonian Hσx0 '〈Π̂0〉σx0
.

I 〈Ô〉σx0
= O[σ̃]|χ0=x0 hydrodynamic

variables: functionals of σ̃ localized at x0.
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microscopic (T)GFT

model

hydrodynamics on

superspace

effective relational

description

averages of collective

observables

macroscopic

cosmological dynamics

coarse-graining



Effective relational volume dynamics
E

ff
.

d
yn

a
m

ic
s (ciaoMean-field approximation

I Mesoscopic regime: large N but negligible interactions.

I Hydrodynamic approx. of kinetic kernel.

I Isotropy: σ̃υ ≡ ρυe iθυ fundamental variables.

σ̃
′′
υ − 2iπ̃0σ̃

′
υ − E 2

υσ̃ = 0.

Effective relational Friedmann equations

(
V ′

3V

)2

'
(

2
∑∫
υ
Vυρυsgn(ρ′υ)

√
Eυ − Q2

υ/ρ
2
υ + µ2

υρ
2
υ

3
∑∫
υ
Vυρ2

υ

)2
V ′′

V
'

2
∑∫
υ
Vυ
[
Eυ + 2µ2

υρ
2
υ

]
∑∫
υ
Vυρ2

υ

Classical limit (large ρυs, late times) Bounce

I If µ2
υ is mildly dependent on υ (or one υ is

dominating) and equal to 3πG

(V ′/3V )2 ' 4πG/3 flat FLRW

I Quantum fluctuations on clock and geometric

variables are under control.

I A non-zero volume bounce happens for a large

range of initial conditions (at least one Qυ 6= 0 or

one Eυ < 0).

I The average singularity resolution may still be

spoiled by quantum effects on geometric and clock

variables.

LM, Oriti 2008.02774; LM, Oriti 2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Pithis 2112.00091; . . .
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Exploring the physics of (T)GFT

condensates



Physics of (T)GFT cosmology
In

cl
u

d
in

g
in

te
ra

ct
io

n
s

(ciaoGeometric acceleration from interactions

Early times: geometric inflation Late times: phantom dark energy

3 Geometric inflation from QG interactions.

For some models bottom-up natural and slow-roll.

Comparison with observations?

3 Phantom dark energy generated by QG

effects (no field theoretic issue).

Comparison with observations?

(ciaoIncluding more realistic matter: running couplings

3 Matching with GR requires the macroscopic

constants (including G) to run with time.

Insights on renormalization?

Connection with asymptotic safety?

In
h

o
m

o
g

en
ei

ti
es

(ciaoEffective dynamics of cosmological scalar perturbations(

I Classical system: gravity + 5 m.c.m.f. scalar

fields, 4 of which constitute the relational frame.

I Perturbations at the level of σ.

3 Matching with GR at late times only for

super-horizon modes.

Why the mismatch?

Relation with modified gravity?

Full relational frame requires quanta

with different causal properties.

Including quantum correlations

substantially helps the matching.

Geometry from quantum correlations!

De Cesare, Oriti, Pithis 1606.00352; LM, Oriti 2112.12677; Oriti, Pang 2105.03751; Ladstätter, LM, Oriti (to appear); Jercher, LM, Pithis (to appear)

Luca Marchetti (T)GFT and Emergent Cosmology 12



Physics of (T)GFT cosmology
In

cl
u

d
in

g
in

te
ra

ct
io

n
s

(ciaoGeometric acceleration from interactions

Early times: geometric inflation

Late times: phantom dark energy

3 Geometric inflation from QG interactions.

For some models bottom-up natural and slow-roll.

Comparison with observations?

3 Phantom dark energy generated by QG

effects (no field theoretic issue).

Comparison with observations?

(ciaoIncluding more realistic matter: running couplings

3 Matching with GR requires the macroscopic

constants (including G) to run with time.

Insights on renormalization?

Connection with asymptotic safety?

In
h

o
m

o
g

en
ei

ti
es

(ciaoEffective dynamics of cosmological scalar perturbations(

I Classical system: gravity + 5 m.c.m.f. scalar

fields, 4 of which constitute the relational frame.

I Perturbations at the level of σ.

3 Matching with GR at late times only for

super-horizon modes.

Why the mismatch?

Relation with modified gravity?

Full relational frame requires quanta

with different causal properties.

Including quantum correlations

substantially helps the matching.

Geometry from quantum correlations!

De Cesare, Oriti, Pithis 1606.00352; LM, Oriti 2112.12677; Oriti, Pang 2105.03751; Ladstätter, LM, Oriti (to appear); Jercher, LM, Pithis (to appear)

Luca Marchetti (T)GFT and Emergent Cosmology 12



Physics of (T)GFT cosmology
In

cl
u

d
in

g
in

te
ra

ct
io

n
s

(ciaoGeometric acceleration from interactions

Early times: geometric inflation Late times: phantom dark energy

3 Geometric inflation from QG interactions.

For some models bottom-up natural and slow-roll.

Comparison with observations?

3 Phantom dark energy generated by QG

effects (no field theoretic issue).

Comparison with observations?

(ciaoIncluding more realistic matter: running couplings

3 Matching with GR requires the macroscopic

constants (including G) to run with time.

Insights on renormalization?

Connection with asymptotic safety?

In
h

o
m

o
g

en
ei

ti
es

(ciaoEffective dynamics of cosmological scalar perturbations(

I Classical system: gravity + 5 m.c.m.f. scalar

fields, 4 of which constitute the relational frame.

I Perturbations at the level of σ.

3 Matching with GR at late times only for

super-horizon modes.

Why the mismatch?

Relation with modified gravity?

Full relational frame requires quanta

with different causal properties.

Including quantum correlations

substantially helps the matching.

Geometry from quantum correlations!

De Cesare, Oriti, Pithis 1606.00352; LM, Oriti 2112.12677; Oriti, Pang 2105.03751; Ladstätter, LM, Oriti (to appear); Jercher, LM, Pithis (to appear)

Luca Marchetti (T)GFT and Emergent Cosmology 12



Physics of (T)GFT cosmology
In

cl
u

d
in

g
in

te
ra

ct
io

n
s

(ciaoGeometric acceleration from interactions

Early times: geometric inflation Late times: phantom dark energy

3 Geometric inflation from QG interactions.

For some models bottom-up natural and slow-roll.

Comparison with observations?

3 Phantom dark energy generated by QG

effects (no field theoretic issue).

Comparison with observations?

(ciaoIncluding more realistic matter: running couplings

3 Matching with GR requires the macroscopic

constants (including G) to run with time.

Insights on renormalization?

Connection with asymptotic safety?

In
h

o
m

o
g

en
ei

ti
es

(ciaoEffective dynamics of cosmological scalar perturbations(

I Classical system: gravity + 5 m.c.m.f. scalar

fields, 4 of which constitute the relational frame.

I Perturbations at the level of σ.

3 Matching with GR at late times only for

super-horizon modes.

Why the mismatch?

Relation with modified gravity?

Full relational frame requires quanta

with different causal properties.

Including quantum correlations

substantially helps the matching.

Geometry from quantum correlations!

De Cesare, Oriti, Pithis 1606.00352; LM, Oriti 2112.12677; Oriti, Pang 2105.03751; Ladstätter, LM, Oriti (to appear); Jercher, LM, Pithis (to appear)

Luca Marchetti (T)GFT and Emergent Cosmology 12



Physics of (T)GFT cosmology
In

cl
u

d
in

g
in

te
ra

ct
io

n
s

(ciaoGeometric acceleration from interactions

Early times: geometric inflation Late times: phantom dark energy

3 Geometric inflation from QG interactions.

For some models bottom-up natural and slow-roll.

Comparison with observations?

3 Phantom dark energy generated by QG

effects (no field theoretic issue).

Comparison with observations?

(ciaoIncluding more realistic matter: running couplings

3 Matching with GR requires the macroscopic

constants (including G) to run with time.

Insights on renormalization?

Connection with asymptotic safety?

In
h

o
m

o
g

en
ei

ti
es

(ciaoEffective dynamics of cosmological scalar perturbations(

I Classical system: gravity + 5 m.c.m.f. scalar

fields, 4 of which constitute the relational frame.

I Perturbations at the level of σ.

3 Matching with GR at late times only for

super-horizon modes.

Why the mismatch?

Relation with modified gravity?

Full relational frame requires quanta

with different causal properties.

Including quantum correlations

substantially helps the matching.

Geometry from quantum correlations!

De Cesare, Oriti, Pithis 1606.00352; LM, Oriti 2112.12677; Oriti, Pang 2105.03751; Ladstätter, LM, Oriti (to appear); Jercher, LM, Pithis (to appear)

Luca Marchetti (T)GFT and Emergent Cosmology 12



Physics of (T)GFT cosmology
In

cl
u

d
in

g
in

te
ra

ct
io

n
s

(ciaoGeometric acceleration from interactions

Early times: geometric inflation Late times: phantom dark energy

3 Geometric inflation from QG interactions.

For some models bottom-up natural and slow-roll.

Comparison with observations?

3 Phantom dark energy generated by QG

effects (no field theoretic issue).

Comparison with observations?

(ciaoIncluding more realistic matter: running couplings

3 Matching with GR requires the macroscopic

constants (including G) to run with time.

Insights on renormalization?

Connection with asymptotic safety?

In
h

o
m

o
g

en
ei

ti
es

(ciaoEffective dynamics of cosmological scalar perturbations(

I Classical system: gravity + 5 m.c.m.f. scalar

fields, 4 of which constitute the relational frame.

I Perturbations at the level of σ.

3 Matching with GR at late times only for

super-horizon modes.

Why the mismatch?

Relation with modified gravity?

Full relational frame requires quanta

with different causal properties.

Including quantum correlations

substantially helps the matching.

Geometry from quantum correlations!

De Cesare, Oriti, Pithis 1606.00352; LM, Oriti 2112.12677; Oriti, Pang 2105.03751; Ladstätter, LM, Oriti (to appear); Jercher, LM, Pithis (to appear)

Luca Marchetti (T)GFT and Emergent Cosmology 12



Physics of (T)GFT cosmology
In

cl
u

d
in

g
in

te
ra

ct
io

n
s

(ciaoGeometric acceleration from interactions

Early times: geometric inflation Late times: phantom dark energy

3 Geometric inflation from QG interactions.

For some models bottom-up natural and slow-roll.

Comparison with observations?

3 Phantom dark energy generated by QG

effects (no field theoretic issue).

Comparison with observations?

(ciaoIncluding more realistic matter: running couplings

3 Matching with GR requires the macroscopic

constants (including G) to run with time.

Insights on renormalization?

Connection with asymptotic safety?

In
h

o
m

o
g

en
ei

ti
es

(ciaoEffective dynamics of cosmological scalar perturbations(

I Classical system: gravity + 5 m.c.m.f. scalar

fields, 4 of which constitute the relational frame.

I Perturbations at the level of σ.

3 Matching with GR at late times only for

super-horizon modes.

Why the mismatch?

Relation with modified gravity?

Full relational frame requires quanta

with different causal properties.

Including quantum correlations

substantially helps the matching.

Geometry from quantum correlations!

De Cesare, Oriti, Pithis 1606.00352; LM, Oriti 2112.12677; Oriti, Pang 2105.03751; Ladstätter, LM, Oriti (to appear); Jercher, LM, Pithis (to appear)

Luca Marchetti (T)GFT and Emergent Cosmology 12



Physics of (T)GFT cosmology
In

cl
u

d
in

g
in

te
ra

ct
io

n
s

(ciaoGeometric acceleration from interactions

Early times: geometric inflation Late times: phantom dark energy

3 Geometric inflation from QG interactions.

For some models bottom-up natural and slow-roll.

Comparison with observations?

3 Phantom dark energy generated by QG

effects (no field theoretic issue).

Comparison with observations?

(ciaoIncluding more realistic matter: running couplings

3 Matching with GR requires the macroscopic

constants (including G) to run with time.

Insights on renormalization?

Connection with asymptotic safety?

In
h

o
m

o
g

en
ei

ti
es

(ciaoEffective dynamics of cosmological scalar perturbations(

I Classical system: gravity + 5 m.c.m.f. scalar

fields, 4 of which constitute the relational frame.

I Perturbations at the level of σ.

3 Matching with GR at late times only for

super-horizon modes.

Why the mismatch?

Relation with modified gravity?

Full relational frame requires quanta

with different causal properties.

Including quantum correlations

substantially helps the matching.

Geometry from quantum correlations!

De Cesare, Oriti, Pithis 1606.00352; LM, Oriti 2112.12677; Oriti, Pang 2105.03751; Ladstätter, LM, Oriti (to appear); Jercher, LM, Pithis (to appear)

Luca Marchetti (T)GFT and Emergent Cosmology 12



Physics of (T)GFT cosmology
In

cl
u

d
in

g
in

te
ra

ct
io

n
s

(ciaoGeometric acceleration from interactions

Early times: geometric inflation Late times: phantom dark energy

3 Geometric inflation from QG interactions.

For some models bottom-up natural and slow-roll.

Comparison with observations?

3 Phantom dark energy generated by QG

effects (no field theoretic issue).

Comparison with observations?

(ciaoIncluding more realistic matter: running couplings

3 Matching with GR requires the macroscopic

constants (including G) to run with time.

Insights on renormalization?

Connection with asymptotic safety?

In
h

o
m

o
g

en
ei

ti
es

(ciaoEffective dynamics of cosmological scalar perturbations(

I Classical system: gravity + 5 m.c.m.f. scalar

fields, 4 of which constitute the relational frame.

I Perturbations at the level of σ.

3 Matching with GR at late times only for

super-horizon modes.

Why the mismatch?

Relation with modified gravity?

Full relational frame requires quanta

with different causal properties.

Including quantum correlations

substantially helps the matching.

Geometry from quantum correlations!

De Cesare, Oriti, Pithis 1606.00352; LM, Oriti 2112.12677; Oriti, Pang 2105.03751; Ladstätter, LM, Oriti (to appear); Jercher, LM, Pithis (to appear)

Luca Marchetti (T)GFT and Emergent Cosmology 12



Physics of (T)GFT cosmology
In

cl
u

d
in

g
in

te
ra

ct
io

n
s

(ciaoGeometric acceleration from interactions

Early times: geometric inflation Late times: phantom dark energy

3 Geometric inflation from QG interactions.

For some models bottom-up natural and slow-roll.

Comparison with observations?

3 Phantom dark energy generated by QG

effects (no field theoretic issue).

Comparison with observations?

(ciaoIncluding more realistic matter: running couplings

3 Matching with GR requires the macroscopic

constants (including G) to run with time.

Insights on renormalization?

Connection with asymptotic safety?

In
h

o
m

o
g

en
ei

ti
es

(ciaoEffective dynamics of cosmological scalar perturbations(

I Classical system: gravity + 5 m.c.m.f. scalar

fields, 4 of which constitute the relational frame.

I Perturbations at the level of σ.

3 Matching with GR at late times only for

super-horizon modes.

Why the mismatch?

Relation with modified gravity?

Full relational frame requires quanta

with different causal properties.

Including quantum correlations

substantially helps the matching.

Geometry from quantum correlations!

De Cesare, Oriti, Pithis 1606.00352; LM, Oriti 2112.12677; Oriti, Pang 2105.03751; Ladstätter, LM, Oriti (to appear); Jercher, LM, Pithis (to appear)

Luca Marchetti (T)GFT and Emergent Cosmology 12



Physics of (T)GFT cosmology
In

cl
u

d
in

g
in

te
ra

ct
io

n
s

(ciaoGeometric acceleration from interactions

Early times: geometric inflation Late times: phantom dark energy

3 Geometric inflation from QG interactions.

For some models bottom-up natural and slow-roll.

Comparison with observations?

3 Phantom dark energy generated by QG

effects (no field theoretic issue).

Comparison with observations?

(ciaoIncluding more realistic matter: running couplings

3 Matching with GR requires the macroscopic

constants (including G) to run with time.

Insights on renormalization?

Connection with asymptotic safety?

In
h

o
m

o
g

en
ei

ti
es

(ciaoEffective dynamics of cosmological scalar perturbations(

I Classical system: gravity + 5 m.c.m.f. scalar

fields, 4 of which constitute the relational frame.

I Perturbations at the level of σ.

3 Matching with GR at late times only for

super-horizon modes.

Why the mismatch?

Relation with modified gravity?

Full relational frame requires quanta

with different causal properties.

Including quantum correlations

substantially helps the matching.

Geometry from quantum correlations!

De Cesare, Oriti, Pithis 1606.00352; LM, Oriti 2112.12677; Oriti, Pang 2105.03751; Ladstätter, LM, Oriti (to appear); Jercher, LM, Pithis (to appear)
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Relational strategy: the classical and quantum GR perspective

Background

independence
Problem of time Relational strategy

Quite well understood from a classical perspective, less from a quantum perspective.

QClassicalQ Quantum GR

Notion of relationality can be classically encoded in

relational observables:

I Take two phase space functions, f and T with

{T ,CH} 6= 0 (T relational clock).

I The relational extension Ff ,T (τ) of f encodes

the value of f when T reads τ .

I Evolution in τ is relational.

I Ff ,T (τ) is a very complicated function, often

written in series form.

I Applications only for (almost) deparametrizable

systems, such as GR plus pressureless dust or

massless scalar fields.

Dirac approach: first quantize, then implement

relationality

I Perspective neutral approach: all variables are

treated on the same footing.

I Poor control of the physical Hilbert space.

Reduced phase space approach: first implment

relationality, then quantize

I No quantum constraint to solve.

I Led to quantization of simple deparametrizable

models (LQG).

I Not perspective neutral. Too complicated to

implement in most of the cases.

Isham 9210011; Rovelli Class. Quantum Grav. 8 297; Dittrich 0507106; Hoehn et al. 1912.00033 and 2007.00580; Tambornino 1109.0740; . . .
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Relational strategy and emergent quantum gravity theories

Background

independence
Problem of time Relational strategy

I Well understood from a classical perspective, less from a quantum perspective.

I Difficulties especially relevant for emergent QG theories.

Microscopic pre-geo Macroscopic proto-geo

I Fundamental d.o.f. are weakly related

to spacetime quantities;

I Set of collective

observables;

I The latter expected to emerge from the

former when a continuum limit is taken.

I Coarse grained states or

probability distributions.

The quantities whose evolution we want to describe relationally

are the result of a coarse-graining of some fundamental d.o.f.

Effective approaches:
I Bypass most conceptual and technical difficulties;

I Relevant for observative purposes.

LM, Oriti 2008.02774; Giulini 0603087; Kuchar Int.J.Mod.Phys.D 20(2011); Isham 9210011; Rovelli Class. Quantum Grav. 8 297;
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Emergent effective relational dynamics
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T
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Q
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N

T
U

M
PROTO-GEOMETRIC

PRE-GEOMETRIC

Effective
Relational
Dynamics

Basic principles

Emergence Rel. dynamics formulated in terms

of collective observables and states defined

in the microscopic theory.

Effectiveness Rel. evolution intended to hold on

average. Internal clock not too quantum.

Concrete example: scalar field clock

Emergence

I Identify a class of states |Ψ〉 which encode

collective behavior and admit a continuum

proto-geometric interpretation.
I Identify a set of collective observables:

Ôa χ̂ Π̂ N̂

Geometric
observables

Scalar field and
its momentum

Number
of quanta

〈·〉Ψ 〈·〉Ψ 〈·〉Ψ

Effectivness

I It exists a “Hamiltonian” Ĥ such that

i
d

d 〈χ̂〉Ψ
〈Ôa〉Ψ = 〈[Ĥ, Ôa]〉Ψ ,

and whose moments coincide with those of Π̂.
I Relative variance of χ̂ on |Ψ〉 should be � 1

and have the characteristic 〈N̂〉−1

Ψ behavior:

σ
2
χ � 1 , σ

2
χ ∼ 〈N̂〉

−1

Ψ .

LM, Oriti 2008.02774; Bojowald, Hoehn, Tsobanjan 1011.3040; Bojowald, Tsobanjan 0906.1772;
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〈Ôa〉Ψ = 〈[Ĥ, Ôa]〉Ψ ,

and whose moments coincide with those of Π̂.
I Relative variance of χ̂ on |Ψ〉 should be � 1

and have the characteristic 〈N̂〉−1

Ψ behavior:

σ
2
χ � 1 , σ

2
χ ∼ 〈N̂〉

−1

Ψ .

LM, Oriti 2008.02774; Bojowald, Hoehn, Tsobanjan 1011.3040; Bojowald, Tsobanjan 0906.1772;

Luca Marchetti (T)GFT and Emergent Cosmology



Emergent effective relational dynamics

P
O

S
T

Q
U

A
N

T
U

M

A
N

T
E

Q
U

A
N

T
U

M
PROTO-GEOMETRIC

PRE-GEOMETRIC

Effective
Relational
Dynamics

Basic principles

Emergence Rel. dynamics formulated in terms

of collective observables and states defined

in the microscopic theory.

Effectiveness Rel. evolution intended to hold on

average. Internal clock not too quantum.

Concrete example: scalar field clock

Emergence

I Identify a class of states |Ψ〉 which encode

collective behavior and admit a continuum

proto-geometric interpretation.
I Identify a set of collective observables:
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