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The QG perspective on Cosmology

Matter sector Initial conditions

Gravity sector

I Impact of singularity resolution on pert.?

I Is the evolution of pert. modified by QG effects?

I . . .

I Are these effects observable?

I Nature of dark matter?

I Singularity resolution?

I . . .

I Nature of dark energy?

I Geometric inflation?

I Is the vacuum state a QG

modified BD vacuum?

I . . .

I Are these effects observable?

Challenges from the QG perspective:

I How to define (in)homogeneity?

I How to extract macroscopic dynamics?

I How to construct cosmological geometries?

I . . .

Relational description

Coarse-graining/

collective behavior
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Relational strategy: the classical and quantum GR perspective

Background

independence
Problem of time Relational strategy

Quite well understood from a classical perspective, less from a quantum perspective.

ClassicalQ Quantum GR

Notion of relationality can be classically encoded in

relational observables:

I Take two phase space functions, f and T with

{T ,CH} 6= 0 (T relational clock).

I The relational extension Ff ,T (τ) of f encodes

the value of f when T reads τ .

I Evolution in τ is relational.

I Ff ,T (τ) is a very complicated function, often

written in series form.

I Applications only for (almost) deparametrizable

systems, such as GR plus pressureless dust or

massless scalar fields.

Dirac approach: first quantize, then implement

relationality

I Perspective neutral approach: all variables are

treated on the same footing.

I Poor control of the physical Hilbert space.

Reduced phase space approach: first implment

relationality, then quantize

I No quantum constraint to solve.

I Led to quantization of simple deparametrizable

models (LQG).

I Not perspective neutral. Too complicated to

implement in most of the cases.

Isham 9210011; Rovelli Class. Quantum Grav. 8 297; Dittrich 0507106; Hoehn et al. 1912.00033 and 2007.00580; Tambornino 1109.0740; . . .
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Relational strategy and emergent quantum gravity theories

Background

independence
Problem of time Relational strategy

I Well understood from a classical perspective, less from a quantum perspective.

I Difficulties especially relevant for emergent QG theories.

Microscopic pre-geo Macroscopic proto-geo

I Fundamental d.o.f. are weakly related

to spacetime quantities;

I Set of collective

observables;

I The latter expected to emerge from the

former when a continuum limit is taken.

I Coarse grained states or

probability distributions.

The quantities whose evolution we want to describe relationally

are the result of a coarse-graining of some fundamental d.o.f.

Effective approaches:
I Bypass most conceptual and technical difficulties;

I Relevant for observative purposes.

LM, Oriti 2008.02774; Giulini 0603087; Kuchar Int.J.Mod.Phys.D 20(2011); Isham 9210011; Rovelli Class. Quantum Grav. 8 297;
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Emergent effective relational dynamics

P
O

S
T

Q
U

A
N

T
U

M

A
N

T
E

Q
U

A
N

T
U

M
PROTO-GEOMETRIC

PRE-GEOMETRIC

Effective
Relational
Dynamics

Basic principles

Emergence Rel. dynamics formulated in terms

of collective observables and states defined

in the microscopic theory.

Effectiveness Rel. evolution intended to hold on

average. Internal clock not too quantum.

Concrete example: scalar field clock

Emergence

I Identify a class of states |Ψ〉 which encode

collective behavior and admit a continuum

proto-geometric interpretation.
I Identify a set of collective observables:

Ôa χ̂ Π̂ N̂

Geometric
observables

Scalar field and
its momentum

Number
of quanta

〈·〉Ψ 〈·〉Ψ 〈·〉Ψ

Effectivness

I It exists a “Hamiltonian” Ĥ such that

i
d

d 〈χ̂〉Ψ
〈Ôa〉Ψ = 〈[Ĥ, Ôa]〉Ψ ,

and whose moments coincide with those of Π̂.
I Relative variance of χ̂ on |Ψ〉 should be � 1

and have the characteristic 〈N̂〉−1

Ψ behavior:

σ
2
χ � 1 , σ

2
χ ∼ 〈N̂〉

−1

Ψ .

LM, Oriti 2008.02774; Bojowald, Hoehn, Tsobanjan 1011.3040; Bojowald, Tsobanjan 0906.1772;
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Homogeneous cosmologies from

(T)GFT condensates



The (T)GFT approach to QG

(Tensorial) Group Field Theories:

theories of a field ϕ : Gd → C defined
on d copies of a group manifold G .

d is the dimension of the “spacetime to be” (d = 4)

and G is the local gauge group of gravity,

G = SL(2,C) or, in many applications, G = SU(2).

ciao

ciao Kinematicsy

Boundary states are d − 1-simplices decorated with quantum geometric data:

I Group (Lie algebra) variables associated to discretized gravitational quantities.

I Appropriate (geometricity) constraints allow the simplicial interpretation.

I Scalar field discretized on each d-simplex: each d − 1-simplex composing it

carries values χ ∈ Rdl .

ciao Dynamics

SGFT obtained by comparing ZGFT with simplicial gravity path integral.

I Non-local and combinatorial interactions guarantee the

gluing of d − 1-simplices into d-simplices.

I Γ are dual to spacetime triangulations.

I Scalar field data are local in interactions.

ZGFT =
∑

Γ

∏
i λ

ni (Γ)

i

sym(Γ)
ZGFT(Γ)

GFTs are QFTs of atoms of spacetime.

H1-p =

g1

g2

g3

g4

•H1-p =

g1

g2

g3

g4

•χ

Oriti 0912.2441; Oriti 1408.7112; Krajewski 1210.6257; Gielen, Oriti 1311.1238; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Sindoni 1602.08104; . . .
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QG condensates and peaked states

Extracting continuum physics

I Identify coarse-grained states and collective

observables with a continuum interpretation.

I Obtain macroscopic, effective, and relational

dynamics from the microscopic one.

yC
o

lle
ct

iv
e

st
a

te
sy

(ciao(T)GFT condensates

Simplest collective behavior: macroscopic σ dynamics well described in the mean-field approx.

|σ〉 = Nσ exp

[∫
d
d
χ

∫
dgI σ(gI , χ

µ)ϕ̂†(gI , χ
µ)

]
|0〉

I Assuming σ(gI , ·) = σ(hgI h
′
, ·), D = GL(3)/O(3)× Rd :

I If χµ constitute a matter ref. frame:

σ(gI , χ
µ) ∼ distribution of

spatial geometries at χµ.

R
el

a
ti

o
n

a
lit

y

(ciaoCondensate Peaked States(

I If σ is peaked on χµ ' xµ, |σ〉x encodes relational information about the spatial geometry at xµ.

σ = (fixed peaking function η)× (dynamically determined reduced wavefunction σ̃)

I Peaking function e.g. Gaussian with non-zero width; reduced wavefunction assumed not to spoil

peaking properties.

LM, Oriti 2008.02774; LM, Oriti 2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Oriti, Sindoni 1311.1238; Gielen 1404.2944;
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Cosmology from QG condensates: observables and relationality

Spatial relational homogeneity:

σ depends on a single “clock” scalar field χ0

Observablesp

Number, volume (determined e.g. by the mapping with

LQG) and matter operators (notation: (·, ·) =

∫
dχ

0
dgI ):

N̂ = (ϕ̂†, ϕ̂) V̂ = (ϕ̂†,V [ϕ̂])

X̂ 0 =
(
ϕ̂
†
, χ

0
ϕ̂
)

Π̂
0

= −i(ϕ̂†, ∂0ϕ̂)

Relationality

I Averaged evolution wrt x0 is physical:

〈χ̂〉σ ≡ 〈X̂〉σ / 〈N̂〉σ ' x0

I . . . and satisfies the requirements of effective

relational dynamics (in the emergent limit).

I 〈Ô〉σ = O[σ̃]|χ0=x0 : exp.

values of extensive

operators are functionals

of σ̃ localized at x0. υ

υ

υ

υ

•χ
Wavefunction

isotropy

〈V̂ 〉σ =
∑∫

υ

Vυ|σ̃υ|2(x0) υ rep. label

I υ = j ∈ N/2 for SU(2) (EPRL-like);
I υ = ρ ∈ R for SL(2,C) (ext. BC).

Oriti 2008.02774; LM, Oriti 2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Pithis 2112.00091;
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Effective relational volume dynamics
E

ff
.

d
yn

a
m

ic
s (ciaoMean-field approximation

I Mesoscopic regime: large N but negligible interactions.

I Hydrodynamic approx. of kinetic kernel.

I Isotropy: σ̃υ ≡ ρυe iθυ fundamental variables.

〈
δS[ϕ̂, ϕ̂†]

δϕ̂(gI , x0, ·)

〉
σ
x0

= 0 .

Effective relational Friedmann equations

(
V ′

3V

)2

'
(

2
∑∫
υ
Vυρυsgn(ρ′υ)

√
Eυ − Q2

υ/ρ
2
υ + µ2

υρ
2
υ

3
∑∫
υ
Vυρ2

υ

)2
V ′′

V
'

2
∑∫
υ
Vυ
[
Eυ + 2µ2

υρ
2
υ

]
∑∫
υ
Vυρ2

υ

Classical limit (large ρυs, late times) Bounce

I If µ2
υ is mildly dependent on υ (or one υ is

dominating) and equal to 3πG

(V ′/3V )2 ' 4πG/3 flat FLRW

I Quantum fluctuations on clock and geometric

variables are under control.

I A non-zero volume bounce happens for a large

range of initial conditions (at least one Qυ 6= 0 or

one Eυ < 0).

I The average singularity resolution may still be

spoiled by quantum effects on geometric and clock

variables.

LM, Oriti 2008.02774; LM, Oriti 2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Pithis 2112.00091; Assanioussi, Kotecha 2003.01097;

Luca Marchetti Emergent Cosmology from (T)GFT condensates 8



Effective relational volume dynamics
E

ff
.

d
yn

a
m

ic
s (ciaoMean-field approximation

I Mesoscopic regime: large N but negligible interactions.

I Hydrodynamic approx. of kinetic kernel.

I Isotropy: σ̃υ ≡ ρυe iθυ fundamental variables.

〈
δS[ϕ̂, ϕ̂†]

δϕ̂(gI , x0, ·)

〉
σ
x0

= 0 .

Effective relational Friedmann equations

(
V ′

3V

)2

'
(

2
∑∫
υ
Vυρυsgn(ρ′υ)

√
Eυ − Q2

υ/ρ
2
υ + µ2

υρ
2
υ

3
∑∫
υ
Vυρ2

υ

)2
V ′′

V
'

2
∑∫
υ
Vυ
[
Eυ + 2µ2

υρ
2
υ

]
∑∫
υ
Vυρ2

υ

Classical limit (large ρυs, late times) Bounce

I If µ2
υ is mildly dependent on υ (or one υ is

dominating) and equal to 3πG

(V ′/3V )2 ' 4πG/3 flat FLRW

I Quantum fluctuations on clock and geometric

variables are under control.

I A non-zero volume bounce happens for a large

range of initial conditions (at least one Qυ 6= 0 or

one Eυ < 0).

I The average singularity resolution may still be

spoiled by quantum effects on geometric and clock

variables.

LM, Oriti 2008.02774; LM, Oriti 2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Pithis 2112.00091; Assanioussi, Kotecha 2003.01097;

Luca Marchetti Emergent Cosmology from (T)GFT condensates 8



Effective relational volume dynamics
E

ff
.

d
yn

a
m

ic
s (ciaoMean-field approximation

I Mesoscopic regime: large N but negligible interactions.

I Hydrodynamic approx. of kinetic kernel.

I Isotropy: σ̃υ ≡ ρυe iθυ fundamental variables.

〈
δS[ϕ̂, ϕ̂†]

δϕ̂(gI , x0, ·)

〉
σ
x0

= 0 .

Effective relational Friedmann equations

(
V ′

3V

)2

'
(

2
∑∫
υ
Vυρυsgn(ρ′υ)

√
Eυ − Q2

υ/ρ
2
υ + µ2

υρ
2
υ

3
∑∫
υ
Vυρ2

υ

)2
V ′′

V
'

2
∑∫
υ
Vυ
[
Eυ + 2µ2

υρ
2
υ

]
∑∫
υ
Vυρ2

υ

Classical limit (large ρυs, late times)

Bounce

I If µ2
υ is mildly dependent on υ (or one υ is

dominating) and equal to 3πG

(V ′/3V )2 ' 4πG/3 flat FLRW

I Quantum fluctuations on clock and geometric

variables are under control.

I A non-zero volume bounce happens for a large

range of initial conditions (at least one Qυ 6= 0 or

one Eυ < 0).

I The average singularity resolution may still be

spoiled by quantum effects on geometric and clock

variables.

LM, Oriti 2008.02774; LM, Oriti 2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Pithis 2112.00091; Assanioussi, Kotecha 2003.01097;

Luca Marchetti Emergent Cosmology from (T)GFT condensates 8



Effective relational volume dynamics
E

ff
.

d
yn

a
m

ic
s (ciaoMean-field approximation

I Mesoscopic regime: large N but negligible interactions.

I Hydrodynamic approx. of kinetic kernel.

I Isotropy: σ̃υ ≡ ρυe iθυ fundamental variables.

〈
δS[ϕ̂, ϕ̂†]

δϕ̂(gI , x0, ·)

〉
σ
x0

= 0 .

Effective relational Friedmann equations

(
V ′

3V

)2

'
(

2
∑∫
υ
Vυρυsgn(ρ′υ)

√
Eυ − Q2

υ/ρ
2
υ + µ2

υρ
2
υ

3
∑∫
υ
Vυρ2

υ

)2
V ′′

V
'

2
∑∫
υ
Vυ
[
Eυ + 2µ2

υρ
2
υ

]
∑∫
υ
Vυρ2

υ

Classical limit (large ρυs, late times) Bounce

I If µ2
υ is mildly dependent on υ (or one υ is

dominating) and equal to 3πG

(V ′/3V )2 ' 4πG/3 flat FLRW

I Quantum fluctuations on clock and geometric

variables are under control.

I A non-zero volume bounce happens for a large

range of initial conditions (at least one Qυ 6= 0 or

one Eυ < 0).

I The average singularity resolution may still be

spoiled by quantum effects on geometric and clock

variables.

LM, Oriti 2008.02774; LM, Oriti 2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Pithis 2112.00091; Assanioussi, Kotecha 2003.01097;

Luca Marchetti Emergent Cosmology from (T)GFT condensates 8



Towards inhomogeneities



Scalar perturbations from (T)GFT condensates

Simplest (slightly) relationally inhomogeneous system

Observables

notation: (·, ·) =

∫
d

4
χdφdgI

F
ra

m
e

X̂µ = (ϕ̂†, χµϕ̂) Π̂µ = −i(ϕ̂†, ∂µϕ̂)

V
o

l.

Only isotropic info: V̂ = (ϕ̂†,V [ϕ̂])

M
a

t.

Φ̂ = (ϕ̂†, φϕ̂) Π̂φ = −i(ϕ̂†, ∂φϕ̂)

States

I CPSs around χµ = xµ, with

• η: Isotropic peaking on rods;

• σ̃: Isotropic distribution of geometric data.

I Small relational σ̃-inhomogeneities (σ̃ = ρe iθ):

ρ = ρ̄(·, χ0) + δρ(·, χµ), θ = θ̄(·, χ0) + δθ(·, χµ).

LM, Oriti 2112.12677; Gerhart, Oriti, Wilson-Ewing 1805.03099;
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Scalar perturbations from (T)GFT condensates

Observables

notation: (·, ·) =

∫
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• σ̃: Isotropic distribution of geometric data.

I Small relational σ̃-inhomogeneities (σ̃ = ρe iθ):

ρ = ρ̄(·, χ0) + δρ(·, χµ), θ = θ̄(·, χ0) + δθ(·, χµ).

Late times volume and matter dynamics

I Averaged q.e.o.m. −→ coupled differential equations for ρ and θ.

I Decoupling for a range of values of CPSs and large N (late times).

Dynamic equations

for 〈V̂ 〉σ , 〈Φ̂〉σ
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Scalar perturbations from (T)GFT condensates
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I Averaged q.e.o.m. −→ coupled differential equations for ρ and θ.

I Decoupling for a range of values of CPSs and large N (late times).

Dynamic equations

for 〈V̂ 〉σ , 〈Φ̂〉σ

Background

I Matching with GR (assuming peaking on

matter momenta).

I Emergent matter and G defined in terms

of microscopic parameters.
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I Averaged q.e.o.m. −→ coupled differential equations for ρ and θ.

I Decoupling for a range of values of CPSs and large N (late times).

Dynamic equations

for 〈V̂ 〉σ , 〈Φ̂〉σ

Background Perturbations

I Matching with GR (assuming peaking on

matter momenta).

I Emergent matter and G defined in terms

of microscopic parameters.

I Super-horizon GR matching.
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Scalar perturbations from (T)GFT condensates

Observables

notation: (·, ·) =

∫
d
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States

I CPSs around χµ = xµ, with

• η: Isotropic peaking on rods;

• σ̃: Isotropic distribution of geometric data.

I Small relational σ̃-inhomogeneities (σ̃ = ρe iθ):

ρ = ρ̄(·, χ0) + δρ(·, χµ), θ = θ̄(·, χ0) + δθ(·, χµ).

Late times volume and matter dynamics

I Averaged q.e.o.m. −→ coupled differential equations for ρ and θ.

I Decoupling for a range of values of CPSs and large N (late times).

Dynamic equations

for 〈V̂ 〉σ , 〈Φ̂〉σ

Background Perturbations

I Matching with GR (assuming peaking on

matter momenta).

I Emergent matter and G defined in terms

of microscopic parameters.

I Super-horizon GR matching.

I No matching for intermediate modes (because of

different coupling with bkg effective metric)!

I Effective metric signature determined by CPSs.
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A state-agnostic approach



Effective approach for constrained quantum systems

How does our scheme for extraction

of relational cosmological physics

depend on the specific choice of states?

A “state-agnostic”

strategy is needed!

Effective state-agnostic approach for constrained quantum systems

Construction of the effective system Relational description

Step 1: definition of the quantum phase space

I Describe the system with exp. values 〈Âi 〉 and moments:

I Poisson structure inherited from the algebra structure{
〈Âi 〉 , 〈Âj〉

}
= (i~)−1

〈
[Âi , Âj ]

〉
(same for ∆s).

Step 2: definition of the constraints

I 〈Ĉ〉 = 0 and 〈(p̂ol− 〈p̂ol〉)Ĉ〉 = 0 eff. constraints;

I Generate gauge transf. on the quantum phase space.

Step 3: truncation scheme (e.g. semiclassicality)

Step 1: choose a clock T̂ ([T̂ , P̂] closes)

Step 2: gauge fixing
I At 1st order: ∆(TAi ) = 0, Ai ∈ A\{P̂}.
I Use constraints to eliminate P̂-variables.

Step 3: relational rewriting

I Determine the remaining gauge flow

which preserves the gauge conditions.

I Write evolution of the remaining

variables wrt. T (classical clock).

LM, Gielen, Oriti, Polaczek 2110.11176; Bojowald, Sandhoefer, Skirzewski, Tsobanjan 0804.3365; Bojowald Tsobanjan 0906.1772;
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〈Âi 〉 , 〈Âj〉
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[Âi , Âj ]
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〉
(same for ∆s).

Step 2: definition of the constraints
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Effective approach for constrained quantum systems
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[Âi , Âj ]

〉
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A state agnostic approach: application to (T)GFT

How can this framework be generalized to a field theory context?

Infinitely many algebra generators. Infinitely many quantum constraints.

Need for an additional truncation scheme!

gMotivationsg Coarse-graining truncation

I Interest in a coarse grained system

characterized by a small number of

macroscopic (1-body) observables.

I Expected to be the case for cosmology.

I When the e.o.m. are linear, consider an

integrated 1-body quantum constraint.

I Algebra generated by minimal set of physically

relevant operators (including constraint).

Rank-4 istropic GFT minimally coupled to a massless scalar field with negligible interactions:

I E.o.m.: Dϕ ≡ (m2 + ~2∆g + λ~2
∂

2
χ)ϕ = 0.

I Quantum constr. Ĉ =
∫
ϕ̂†Dϕ̂ = m2N̂ − Λ̂− λΠ̂2

I Generators: X̂ , Π̂, Π̂2, N̂, Λ̂ and K̂ .

I K̂ such that [Λ̂, K̂ ] = i~αK̂ .

R
es

u
lt

s I The procedure can naturally be carried

over by choosing as clock variable K̂ .

I Relational evolution of 〈X̂〉 in agreement

with classical cosmology.

I Fluctuations are decoupled from expect. values.

I If they are small at small 〈K̂〉 they stay small even

at large 〈K̂〉 (probably associated to the

constancy of N̂).
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∫
ϕ̂†Dϕ̂ = m2N̂ − Λ̂− λΠ̂2

I Generators: X̂ , Π̂, Π̂2, N̂, Λ̂ and K̂ .

I K̂ such that [Λ̂, K̂ ] = i~αK̂ .

R
es

u
lt

s I The procedure can naturally be carried

over by choosing as clock variable K̂ .

I Relational evolution of 〈X̂〉 in agreement

with classical cosmology.

I Fluctuations are decoupled from expect. values.

I If they are small at small 〈K̂〉 they stay small even

at large 〈K̂〉 (probably associated to the

constancy of N̂).

LM, Gielen, Oriti, Polaczek 2110.11176;

Luca Marchetti Emergent Cosmology from (T)GFT condensates 11



A state agnostic approach: application to (T)GFT

How can this framework be generalized to a field theory context?

Infinitely many algebra generators. Infinitely many quantum constraints.

Need for an additional truncation scheme!

gMotivationsg Coarse-graining truncation

I Interest in a coarse grained system

characterized by a small number of

macroscopic (1-body) observables.

I Expected to be the case for cosmology.

I When the e.o.m. are linear, consider an

integrated 1-body quantum constraint.

I Algebra generated by minimal set of physically

relevant operators (including constraint).

Rank-4 istropic GFT minimally coupled to a massless scalar field with negligible interactions:

I E.o.m.: Dϕ ≡ (m2 + ~2∆g + λ~2
∂

2
χ)ϕ = 0.

I Quantum constr. Ĉ =
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Conclusions



Results and perspectives

Relational Dynamics and Emergent QG

Conclusions Perspectives

3 Presentation of a scheme to define effective

relational dynamics for emergent QG theories.

3 Concrete realization in (T)GFT cosmology.

3 The interplay between quantum effects,

emergence and relationality was highlighted.

I How to change frame in an effective relational

context? (Crucial to study unitarity and frame

covariance.)
I When are QG material frames ideal RFs?
I Extension of state-agnostic approach to QFT?

Cosmology from Full QG

Conclusions Perspectives

3 Bkg: Effective volume dynamics with correct

classical limit and possible singularity resolution.

3 Bkg: Investigation of the impact of quantum

fluctuations.

3 Bkg: (almost) state-agnostic extraction of

cosmological relational dynamics.

3 Pert: First steps towards a relational

cosmological perturbation theory from full QG:

3 Super-horizon

matching with GR.

7 No matching with GR at

intermediate scales.

I Bkg: Inclusion of different matter fields, e.g.

scalar field with potential.

I Pert: Impact of bounce on perturbations.

I Pert: Investigate sub-horizon GR mismatch.

• What gravity models

do match?

• Model building? Breakdown of

approximations?

I Pert: Study out of condensate perturbations.
I Pert: Reconstruct an effective metric (produce

operators with geometric macro-interpretation).
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Volume at late times
B

a
ck

g
ro

u
n

d

Classical Quantum

I Harmonic gauge: N = a3.

I Negligible contribution of reference matter.

(V̄ ′/V̄ )2 = 12πGπ
(c)
φ

(V̄ ′/V̄ )′ = 0

I Wavefunction peaked on πφ = π̃φ.

I Domination of single spin υo .

I µυo (πφ) ' cυoπφ, with 4c2
υo

= 12πG .

(V̄ ′/V̄ )2 = 12πG π̃φ (V̄ ′/V̄ )′ = 0

g
P

er
tu

rb
a

ti
o

n
sg Classical Quantum

I First order harmonic gauge.

I Negligible contribution of reference matter.

I Define V (x) =
√

det qij ≡ V̄ + δV .

δV ′′ − 6HδV ′ + 9H2
δV − V̄ 4/3∇2

δV = 0 .

I Wavefunction peaked on πφ = π̃φ.

I Domination of single υo : δV ≡ 2ρ̄υo δρυo .

I µυo (πφ) ' cυoπφ, with 4c2
υo

= 12πG .

δV ′′ − 3HδV ′ + Re(α2)∇2
δV = 0 .

Super-horizon pSub-horizonp

I Matches the classical solution δV ∝ V̄ . I Same diff. structure but different powers of V̄ .

No matching with GR for arbitrary modes.
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Matter at late times
B

a
ck

g
ro

u
n

d

Classical Quantum

I Harmonic gauge: N = a3.

I Negligible contribution of ref. matter.

φ̄
′′ = 0 ,

π
(c)
φ = const. .

I Wavefunction peaked on πφ = π̃φ.

I Domination of single υo .

〈Π̂φ〉σ̄ = π̃φN̄ ,

〈Φ〉σ̄ =

[
−∂πφ

[
Qυo
µυo

]
+ Qυo

∂πφµυo

µυo
x0

]
πφ=π̃φ

pMatching conditionsp

I π
(c)
φ ≡ 〈Π̂φ〉σ̄ /N̄ = π̃φ.

I Peaking in πφ −→ peaking in matter field momenta.

I φ ≡ 〈Φ̂〉σ̄ = −c−1
υo

+ π̃φx
0, Qυo ' π

2
φ!

I Emergent G related to matter content!

P
er

tu
rb

a
ti

o
n

s

Classical Quantum

I First order harmonic gauge.

I Negligible contribution of ref. matter.

δφ
′′ − V̄ 4/3∇2

δφ = 0 .

I Wavefunction peaked on πφ = π̃φ.

I Domination of single spin υo : δV ≡ 2ρ̄υo δρυo .

δφ = δV/V̄ + N̄[∂πφθυo ]πφ=π̃φ
.

I Matching at super-horizon scales I No matching for intermediate scales.
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