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Introduction to (T)GFT



The (T)GFT approach to quantum gravity

(Tensorial) Group Field Theories:

theories of a field ϕ : Gd → C defined
on d copies of a group manifold G .

d is the dimension of the “spacetime to be” (d = 4)

and G is the local gauge group of gravity,

G = SL(2,C) or, in many applications, G = SU(2).

ciao

ciao Kinematicsy

Boundary states are d − 1-simplices decorated with quantum geometric data:

I Appropriate (geometricity) constraints allow the simplicial interpretation.

I Group (Lie algebra) variables associated to discretized gravitational quantities.

ciao Dynamics

SGFT obtained by comparing ZGFT with simplicial gravity path integral.

I Non-local and combinatorial interactions guarantee the

gluing of d − 1-simplices into d-simplices.

I Γ are dual to spacetime triangulations.

ZGFT =
∑

Γ

∏
i λ

ni (Γ)

i

sym(Γ)
ZGFT(Γ)

GFTs are QFTs of atoms of spacetime.

H1-p =

g1

g2

g3

g4

•

Oriti 0912.2441; Oriti 1408.7112; Krajewski 1210.6257; Gielen, Oriti 1311.1238; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Sindoni 1602.08104; . . .
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(T)GFT and matter: scalar fields

(Tensorial) Group Field Theories:

theories of a field ϕ : Gd × Rdl → C
defined on the product of Gd and Rdl .

d is the dimension of the “spacetime to be” (d = 4)

and G is the local gauge group of gravity,

G = SL(2,C) or, in many applications, G = SU(2).

ciao

ciao Kinematicsy

Boundary states are d − 1-simplices decorated with quantum geometric and scalar data:

I Geometricity constraints imposed analogously as before.

I Scalar field discretized on each d-simplex: each

d − 1-simplex composing it carries values χ ∈ Rdl .

ciao Dynamics

SGFT obtained by comparing ZGFT with simplicial gravity + scalar fields path integral.

I Geometric data enter the action in a non-local and

combinatorial fashion.

I Scalar field data are local in interactions.

I For minimally coupled, free, massless scalars:

K(gI , gJ ;χ,χ′) = K(gI , gJ ; |χ− χ′|2)

U(g
(1)
I , . . . , g

(5)
I ,χ) = U(g

(1)
I , . . . , g

(5)
I )

H1-p =

g1

g2

g3

g4

•χ

Li, Oriti, Zhang 1701.08719; Oriti 0912.2441; Gielen, Oriti 1311.1238; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Sindoni 1602.08104; . . .
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Continuum physics and QG: the general perspective

Continuum

limit in QG

Large number of dynamical

microscopic dof.

Full partition function needed!

?GR

?

The (F)RG perspective Landau-Ginzburg theory

Spacetime QFT (T)GFT

I Energy scale defines the

flow from IR and UV.

I Only group structures as

scales (e.g. rep. labels).

UV and IR have different meaning in QG!

I Theory space constrained

by symmetries.

I Symmetries of (T)GFT

models not well known.

Little control over QG theory space!

I Based on collective quantity: order

parameter.

I Mean-field (saddle-point) approx. of Z :

“simple” computations!

I Good description of quantum phase

transitions.

I Allows to study critical behavior of

Gaussian fluctuations over

homogenenous mean-field.

Oriti 2112.02585, Reuter, Saueressig 2019, Kopietz et al. 2010, Finocchiaro, Oriti 2004.07361, Carrozza 1603.01902 . . .
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Landau-Ginzburg theory for toy

models



Landau-Ginzburg for (T)GFT toy models with matter

Can a condensate phase

actually be realized?

What is the impact of

quantum fluctuations?

Answers within the Landau theory for abelian models

Condensate phase Quantum fluctuations

A phase of broken global symmetry can only be

realized when the field manifold is non-compact.

I For compact spaces reaching symmetry breaking

point does not produce long range correlations.

I Same result was shown with FRG techniques.

Mean field theory is reliable for dG such that

2V/(V − 2) ≤ dl + dG (d − s0)

I Ginzburg criterion
〈

(δΦ)2
〉

Ω
�
〈

Φ2
0

〉
Ω

I Scaling of couplings wrt. ξ compatible with

what found in FRG (above critical dimension).

Matter matters!

Matter d.o.f. drastically affect the critical behavior of the system:

I Large correlations associated to the symmetry

breaking point when matter is included!

I Matter lowers critical dimension and improves

mean field theory!

LM, Oriti, Pithis, Thürigen 2110.15336 ; Pithis, Thürigen 2007.08982; Pithis, Thürigen 1808.09765;
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Landau-Ginzburg for (T)GFT toy models with matter

Analysis of a condensate transition characterized by breaking of global Z2-symmetry.

I Φ order parameter, S effective action, d rank.

I dG group dimension, ∆ Laplacian on (abelian) group.

I µ bare mass: µ→ 0 signals the transition.

S[Φ] = (Φ,KΦ) +
∑
γ

λγ

∫
Rdl

dχ trγ(Φ) ,

K = −
dl∑
i=1

αi∂
2
χi

+
d∑

c=1

(−1)dG ∆c + µ ,

Mean-field Fluctuations

I Uniform field ansatz + combinatorial non-locality

requires IR regulator: aG .

I Non-compact limit obtained when aG →∞.

I Non-commuting limits µ→ 0 and aG →∞.

a
r
2
G Φ0 = ζi

(
−

µ

V
∑
γ λγ

) 1
V−2

µ < 0 .

I Gaussian approximation: Φ = Φ0 + δΦ.

I Effective mass of fluctuations depending on

number of zero modes:

bjjj = µ

(
1−

∑
γ

λ̃γÔγ(jjj)

)
Ôγ(jjj) =

d∑
p=0

∑
(`0,...,`p )

O`0...`p

`p∏
`=`1

δj`,0

Critical behavior for abelian models

Correlationsg Ginzburg criterion

I Compact (no matter) ξ finite for µ→ 0.

I Non-compact (matter or aG →∞)

ξ →∞ as µ→ 0.

Q ≡

∫
Ωξ

ddgddlχC(gI ,χ)

ΩξΦ2
0

∼λ
2

V−2
γ ξ

2V
V−2

−dl−dG (d−s0)
.

I s0 lowest number of zero modes; same FRG scaling.
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Landau-Ginzburg theory for

geometric models



Landau-Ginzburg for (T)GFT geometric models with matter

Can a condensate phase

actually be realized?

What is the impact of

quantum fluctuations?

Answers within the Landau theory for geometric models

Procedure identical as before,

except for a few technical

complications

I More complicated group theoretic/representation structure.

I Less straightforward regularization scheme needed.

I Imposition of closure and simplicity constraints.

Condensate phase Quantum fluctuations

A phase of broken global symmetry can only be

realized when the field manifold is non-compact.

I For compact spaces reaching symmetry breaking

point does not produce long range correlations.

I Same result was shown with FRG techniques.

Mean field theory is always reliable!
I Q exponentially suppressed at criticality.

I Infinite scaling dimension!

I Conjecture: only Gaussian fixed point in the

phase diagram (see Benedetti 1403.6712).

Matter matters, but only at low curvature

Due to hyperbolic properties of SL(2,C) matter effects are in general washed out.

I If the hyperbolic space is “flattened”, the

exponential suppression of Q becomes polynomial.

I In this case, matter lowers critical dimension

and improves mean field theory, as before.
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Landau-Ginzburg for (T)GFT geometric models with matter

Analysis of a condensate transition within an extended BC (T)GFT model.

I Φ(χ, g ,X ) satisfies geom. constraints.

I g ∈ SL(2,C), X ∈ H3
+ tetrahedron normal.

S[Φ] = (Φ,KΦ) +
∑
γ

λγ

Vγ∏
i=1

∫
dXi

∫
Rd

l

dχ trγ(Φ) ,

Setting Landau-Ginzburg analysis

I IR regulator Λ and curvature scale a (usually a = 1).

Three important regimes

Λ = 2πa Λ→∞
I Reduces to Spin(4) after

Wick rotation A+
Λ → T+.

I Intermediate comp. done

in this regime.

I Limit and back Wick

rotation at the end.

a finite Λ/a finite

I SL(2,C). I Flat case.

I Mean-field analysis as before.

I Effective mass of Gaussian fluctuations

depending on number of zero modes:

bjjj = µ

(
1−

∑
γ

λ̃γÔγ(jjj)

)
Ôγ(jjj) =

4∑
p=0

∑
`i

O`0...`p

`p∏
`=`1

δp`,1

p2
`

δj`,0δm`,0

Critical behavior for geometric models

Correlationsg Ginzburg criterion

I Computation of ξ possible: only asymptotic

behavior of correlations necessary.

ξ ∝ µ−1 SL(2, C)

ξ ∝ µ−1/2 Flat case

Q ∼ λ
2

Vγ−2
γ ξ

Vγ
Vγ−2

− dl
2 e−2(4−s0)ξ/a

I In the IR (large ξ/a), infinite scaling dimension.

I In the flat limit Q ∼ λ
2

Vγ−2
γ ξ

2Vγ
Vγ−2

−dl−3(4−s0)
.
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Conclusions



Summary of results and a few perspectives

Results: Matter Results: Geometry

3 From a QG perspective, scalar field data

enter locally in the (T)GFT action.

3 Matter makes the (T)GFT domain

non-compact, allowing phase transitions.

3 Critical behavior wrt matter data same as

for local field theories on spacetime.

3 In general, matter improves validity of

mean-field theory.

3 Non-locality affects scaling properties via

the lowest number of zero modes.

3 Due to hyperbolicity, scaling dimension is

infinite (mean-field theory always valid).

3 Closure constraint does not affect critical

behavior in general by dG → dG − 1.

3 Matter “trumped” by geometry, unless

a→∞.

Perspectives

I Extend the analysis to non-uniform

mean-field config. (cosmology).

I Study time- and light-like tetrahedra.

I Only IR Gaussian fixed point? FRG!

I Use matter data to define scales and

locality in FRG?
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