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The QG perspective on cosmological perturbations

Matter-Matter

inhom. dynamics

Generation of

initial conditions

Matter-Gravity

inhom. dynamics

I Impact of singularity resolution on pert.?

I Is the evolution of pert. modified by QG effects?

I . . .

I Are these effects observable?

I Geometric inflation?

I Is the vacuum state a QG

modified BD vacuum?

I . . .

I Are these effects observable?

Challenges from the QG perspective:

I How to define inhomogeneities?

I How to extract macroscopic dynamics?

I How to construct cosmological geometries?

I . . .

Relational description

Coarse-graining/

collective behavior
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(T)GFT condensate cosmology
yC
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ct
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(ciao(T)GFT condensates

Simplest collective behavior: macroscopic σ dynamics well described in the mean-field approx.

|σ〉 = Nσ exp

[∫
d
d
χ

∫
dgI σ(gI , χ

µ)ϕ̂†(gI , χ
µ)

]
|0〉

I Assuming σ(gI , ·) = σ(hgI h
′
, ·), D = GL(3)/O(3)× Rd :

I If χµ constitute a matter ref. frame:

σ(gI , χ
µ) ∼ distribution of

spatial geometries at χµ.

R
el

a
ti

o
n

a
lit

y

(ciaoCondensate Peaked States(

I If σ is peaked on χµ ' xµ, |σ〉x encodes relational information about the spatial geometry at xµ.

σ = (fixed peaking function η)× (dynamically determined reduced wavefunction σ̃)

I 〈χ̂µ〉σx ' xµ, 〈Ô〉σx ' O[σ̃](x): evolution with respect to xµ is effectively relational.

E
ff

.
d

yn
a

m
ic

s (ciaoMean-field approximation

I Mesoscopic regime: large N (emergence) but negligible interactions.

I Hydrodynamic approx. of kinetic kernel due to peaking properties.

I E.o.m. for reduced wavefunction −→ e.o.m. for operator averages.

〈
δS[ϕ̂, ϕ̂†]

δϕ̂(gI , xµ, ·)

〉
σx

= 0 .

LM, Oriti 2008.02774; LM, Oriti 2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Oriti, Sindoni 1311.1238; Gielen 1404.2944;
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Scalar perturbations from (T)GFT condensates

Simplest (slightly) relationally inhomogeneous system

Observables

notation: (·, ·) =

∫
d

4
χdφdgI

F
ra

m
e

X̂µ = (ϕ̂†, χµϕ̂) Π̂µ = −i(ϕ̂†, ∂µϕ̂)

V
o

l.

Only isotropic info: V̂ = (ϕ̂†,V [ϕ̂])

M
a

t.

Φ̂ = (ϕ̂†, φϕ̂) Π̂φ = −i(ϕ̂†, ∂φϕ̂)

States

I CPSs around χµ = xµ, with

• η: Isotropic peaking on rods;

• σ̃: Isotropic distribution of geometric data.

I Small relational σ̃-inhomogeneities (σ̃ = ρe iθ):

ρ = ρ̄(·, χ0) + δρ(·, χµ), θ = θ̄(·, χ0) + δθ(·, χµ).

LM, Oriti 2112.12677; Gerhart, Oriti, Wilson-Ewing 1805.03099;
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Scalar perturbations from (T)GFT condensates

Observables

notation: (·, ·) =

∫
d

4
χdφdgI

F
ra

m
e

X̂µ = (ϕ̂†, χµϕ̂) Π̂µ = −i(ϕ̂†, ∂µϕ̂)

V
o

l.

Only isotropic info: V̂ = (ϕ̂†,V [ϕ̂])

M
a

t.

Φ̂ = (ϕ̂†, φϕ̂) Π̂φ = −i(ϕ̂†, ∂φϕ̂)

States

I CPSs around χµ = xµ, with

• η: Isotropic peaking on rods;

• σ̃: Isotropic distribution of geometric data.

I Small relational σ̃-inhomogeneities (σ̃ = ρe iθ):

ρ = ρ̄(·, χ0) + δρ(·, χµ), θ = θ̄(·, χ0) + δθ(·, χµ).

Late times volume and matter dynamics

I Averaged q.e.o.m. −→ coupled differential equations for ρ and θ.

I Decoupling for a range of values of CPSs and large N (late times).

Dynamic equations

for 〈V̂ 〉σ , 〈Φ̂〉σ

LM, Oriti 2112.12677; Gerhart, Oriti, Wilson-Ewing 1805.03099;

Luca Marchetti Relational cosmological inhomogeneities from QG condensates 3



Scalar perturbations from (T)GFT condensates

Observables

notation: (·, ·) =

∫
d

4
χdφdgI

F
ra

m
e

X̂µ = (ϕ̂†, χµϕ̂) Π̂µ = −i(ϕ̂†, ∂µϕ̂)

V
o

l.

Only isotropic info: V̂ = (ϕ̂†,V [ϕ̂])

M
a

t.

Φ̂ = (ϕ̂†, φϕ̂) Π̂φ = −i(ϕ̂†, ∂φϕ̂)

States

I CPSs around χµ = xµ, with

• η: Isotropic peaking on rods;

• σ̃: Isotropic distribution of geometric data.

I Small relational σ̃-inhomogeneities (σ̃ = ρe iθ):

ρ = ρ̄(·, χ0) + δρ(·, χµ), θ = θ̄(·, χ0) + δθ(·, χµ).

Late times volume and matter dynamics

I Averaged q.e.o.m. −→ coupled differential equations for ρ and θ.

I Decoupling for a range of values of CPSs and large N (late times).

Dynamic equations

for 〈V̂ 〉σ , 〈Φ̂〉σ

Background

I Matching with GR (assuming peaking on

matter momenta).

I Emergent matter and G defined in terms

of microscopic parameters.
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Scalar perturbations from (T)GFT condensates

Observables
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Late times volume and matter dynamics

I Averaged q.e.o.m. −→ coupled differential equations for ρ and θ.

I Decoupling for a range of values of CPSs and large N (late times).

Dynamic equations

for 〈V̂ 〉σ , 〈Φ̂〉σ

Background Perturbations

I Matching with GR (assuming peaking on

matter momenta).

I Emergent matter and G defined in terms

of microscopic parameters.

I Super-horizon GR matching.

I No matching for intermediate modes (because of

different coupling with bkg effective metric)!

I Effective metric signature determined by CPSs.
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Conclusions



Results and perspectives

Results Perspectives (short term)

3 Bkg: Effective bkg dynamics: classical

limit & possible singularity resolution.

3 Bkg: Emergent matter/gravity constants

in terms of microscopic ones.

3 Pert: Effective relational localization of

(scalar) perturbations.

3 Pert: Derivation from full theory of scalar

isotr. pert. effective relational dynamics:

3 Super-horizon

GR matching.

7 No matching with GR

at intermediate scales.

I Bkg: Inclusion of different matter fields,

e.g. scalar field with potential.

I Pert: Bounce impact on perturbations?

I Pert: Why sub-horizon GR mismatch?

• What (modified) gravity models do match?

• QG model building issues?

• Breakdown of some approximations?

I Pert: Out-of-condensate perturbations?

Perspectives (long term)

I Extend the analysis to geometric operators

other than the volume (relax isotropy).

I Study more realistic types of matter.

I Construct a pert. effective metric and

perform a proper SVT decomposition.

I QG effects on the CMB power spectrum?
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The (T)GFT approach to QG

(Tensorial) Group Field Theories:

theories of a field ϕ : Gd → C defined
on d copies of a group manifold G .

d is the dimension of the “spacetime to be” (d = 4)

and G is the local gauge group of gravity,

G = SL(2,C) or, in many applications, G = SU(2).

ciao

ciao Kinematicsy

Boundary states are d − 1-simplices decorated with quantum geometric data:

I Appropriate (geometricity) constraints allow the simplicial interpretation.

I Group (Lie algebra) variables associated to discretized gravitational quantities.

I Scalar field discretized on each d-simplex: each d − 1-simplex composing it

carries values χ ∈ Rdl .

ciao Dynamics

SGFT obtained by comparing ZGFT with simplicial gravity path integral.

I Non-local and combinatorial interactions guarantee the

gluing of d − 1-simplices into d-simplices.

I Γ are dual to spacetime triangulations.

I Scalar field data are local in interactions.

ZGFT =
∑

Γ

∏
i λ

ni (Γ)

i

sym(Γ)
ZGFT(Γ)

GFTs are QFTs of atoms of spacetime.

H1-p =

g1

g2

g3

g4

•H1-p =

g1

g2

g3

g4

•χ

Oriti 0912.2441; Oriti 1408.7112; Krajewski 1210.6257; Gielen, Oriti 1311.1238; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Sindoni 1602.08104; . . .
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The (T)GFT approach to QG

(Tensorial) Group Field Theories:
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Relational strategy: the classical and quantum GR perspective

Background

independence
Problem of time Relational strategy

Quite well understood from a classical perspective, less from a quantum perspective.

ClassicalQ Quantum GR

Notion of relationality can be classically encoded in

relational observables:

I Take two phase space functions, f and T with

{T ,CH} 6= 0 (T relational clock).

I The relational extension Ff ,T (τ) of f encodes

the value of f when T reads τ .

I Evolution in τ is relational.

I Ff ,T (τ) is a very complicated function, often

written in series form.

I Applications only for (almost) deparametrizable

systems, such as GR plus pressureless dust or

massless scalar fields.

Dirac approach: first quantize, then implement

relationality

I Clock neutral approach: all variables are treated

on the same footing.

I Poor control of the physical Hilbert space.

Reduced phase space approach: first implment

relationality, then quantize

I No quantum constraint to solve.

I Led to quantization of simple deparametrizable

models.

I Not clock neutral. Too complicated to

implement for most of the cases.

Isham 9210011; Rovelli Class. Quantum Grav. 8 297; Dittrich 0507106; Hoehn et al. 1912.00033; Tambornino 1109.0740;
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Emergent effective relational dynamics

P
O

S
T

Q
U

A
N

T
U

M

A
N

T
E

Q
U

A
N

T
U

M
PROTO-GEOMETRIC

PRE-GEOMETRIC

Effective
Relational
Dynamics

Basic principles

Emergence Rel. dynamics formulated in terms

of collective observables and states defined

in the microscopic theory.

Effectiveness Rel. evolution intended to hold on

average. Internal clock not too quantum.

Concrete example: scalar field clock

Emergence

I Identify a class of states |Ψ〉 which encode

collective behavior and admit a continuum

proto-geometric interpretation.
I Identify a set of collective observables:

Ôa χ̂ Π̂ N̂

Geometric
observables

Scalar field and
its momentum

Number
of quanta

〈·〉Ψ 〈·〉Ψ 〈·〉Ψ

Effectivness

I It exists a “Hamiltonian” Ĥ such that

i
d

d 〈χ̂〉Ψ
〈Ôa〉Ψ = 〈[Ĥ, Ôa]〉Ψ ,

and whose moments coincide with those of Π̂.
I Relative variance of χ̂ on |Ψ〉 should be � 1

and have the characteristic 〈N̂〉−1

Ψ behavior:

σ
2
χ � 1 , σ

2
χ ∼ 〈N̂〉

−1

Ψ .

LM, Oriti 2008.02774; Bojowald, Hoehn, Tsobanjan 1011.3040; Bojowald, Tsobanjan 0906.1772;
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Volume at late times
B

a
ck

g
ro

u
n

d

Classical Quantum

I Harmonic gauge: N = a3.

I Negligible contribution of reference matter.

(V̄ ′/V̄ )2 = 12πGπ
(c)
φ

(V̄ ′/V̄ )′ = 0

I Wavefunction peaked on πφ = π̃φ.

I Domination of single spin υo .

I µυo (πφ) ' cυoπφ, with 4c2
υo

= 12πG .

(V̄ ′/V̄ )2 = 12πG π̃φ (V̄ ′/V̄ )′ = 0

g
P

er
tu

rb
a

ti
o

n
sg Classical Quantum

I First order harmonic gauge.

I Negligible contribution of reference matter.

I Define V (x) =
√

det qij ≡ V̄ + δV .

δV ′′ − 6HδV ′ + 9H2
δV − V̄ 4/3∇2

δV = 0 .

I Wavefunction peaked on πφ = π̃φ.

I Domination of single υo : δV ≡ 2ρ̄υo δρυo .

I µυo (πφ) ' cυoπφ, with 4c2
υo

= 12πG .

δV ′′ − 3HδV ′ + Re(α2)∇2
δV = 0 .

Super-horizon pSub-horizonp

I Matches the classical solution δV ∝ V̄ . I Same diff. structure but different powers of V̄ .

No matching with GR for arbitrary modes.

LM, Oriti 2112.12677; Gerhart, Oriti, Wilson-Ewing 1805.03099;

Luca Marchetti Relational cosmological inhomogeneities from QG condensates



Volume at late times
B

a
ck

g
ro

u
n

d

Classical Quantum

I Harmonic gauge: N = a3.

I Negligible contribution of reference matter.

(V̄ ′/V̄ )2 = 12πGπ
(c)
φ

(V̄ ′/V̄ )′ = 0

I Wavefunction peaked on πφ = π̃φ.

I Domination of single spin υo .

I µυo (πφ) ' cυoπφ, with 4c2
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δV ′′ − 3HδV ′ + Re(α2)∇2
δV = 0 .

Super-horizon pSub-horizonp

I Matches the classical solution δV ∝ V̄ . I Same diff. structure but different powers of V̄ .

No matching with GR for arbitrary modes.
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I Harmonic gauge: N = a3.

I Negligible contribution of ref. matter.
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′′ = 0 ,

π
(c)
φ = const. .

I Wavefunction peaked on πφ = π̃φ.

I Domination of single υo .

〈Π̂φ〉σ̄ = π̃φN̄ ,

〈Φ〉σ̄ =

[
−∂πφ

[
Qυo
µυo

]
+ Qυo

∂πφµυo

µυo
x0

]
πφ=π̃φ

pMatching conditionsp

I π
(c)
φ ≡ 〈Π̂φ〉σ̄ /N̄ = π̃φ.

I Peaking in πφ −→ peaking in matter field momenta.

I φ ≡ 〈Φ̂〉σ̄ = −c−1
υo

+ π̃φx
0, Qυo ' π

2
φ!

I Emergent G related to matter content!
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I Domination of single spin υo : δV ≡ 2ρ̄υo δρυo .

δφ = δV/V̄ + N̄[∂πφθυo ]πφ=π̃φ
.

I Matching at super-horizon scales I No matching for intermediate scales.

LM, Oriti 2112.12677; Gerhart, Oriti, Wilson-Ewing 1805.03099;

Luca Marchetti Relational cosmological inhomogeneities from QG condensates



Matter at late times
B

a
ck

g
ro

u
n

d

Classical Quantum

I Harmonic gauge: N = a3.

I Negligible contribution of ref. matter.

φ̄
′′ = 0 ,

π
(c)
φ = const. .

I Wavefunction peaked on πφ = π̃φ.

I Domination of single υo .

〈Π̂φ〉σ̄ = π̃φN̄ ,

〈Φ〉σ̄ =

[
−∂πφ

[
Qυo
µυo

]
+ Qυo

∂πφµυo

µυo
x0

]
πφ=π̃φ

pMatching conditionsp

I π
(c)
φ ≡ 〈Π̂φ〉σ̄ /N̄ = π̃φ.

I Peaking in πφ −→ peaking in matter field momenta.

I φ ≡ 〈Φ̂〉σ̄ = −c−1
υo

+ π̃φx
0, Qυo ' π

2
φ!

I Emergent G related to matter content!

P
er

tu
rb

a
ti

o
n

s

Classical Quantum

I First order harmonic gauge.

I Negligible contribution of ref. matter.

δφ
′′ − V̄ 4/3∇2

δφ = 0 .

I Wavefunction peaked on πφ = π̃φ.

I Domination of single spin υo : δV ≡ 2ρ̄υo δρυo .

δφ = δV/V̄ + N̄[∂πφθυo ]πφ=π̃φ
.

I Matching at super-horizon scales I No matching for intermediate scales.

LM, Oriti 2112.12677; Gerhart, Oriti, Wilson-Ewing 1805.03099;

Luca Marchetti Relational cosmological inhomogeneities from QG condensates



Matter at late times
B

a
ck

g
ro

u
n

d

Classical Quantum

I Harmonic gauge: N = a3.

I Negligible contribution of ref. matter.

φ̄
′′ = 0 ,

π
(c)
φ = const. .

I Wavefunction peaked on πφ = π̃φ.

I Domination of single υo .

〈Π̂φ〉σ̄ = π̃φN̄ ,

〈Φ〉σ̄ =

[
−∂πφ

[
Qυo
µυo

]
+ Qυo

∂πφµυo

µυo
x0

]
πφ=π̃φ

pMatching conditionsp

I π
(c)
φ ≡ 〈Π̂φ〉σ̄ /N̄ = π̃φ.

I Peaking in πφ −→ peaking in matter field momenta.

I φ ≡ 〈Φ̂〉σ̄ = −c−1
υo

+ π̃φx
0, Qυo ' π

2
φ!

I Emergent G related to matter content!

P
er

tu
rb

a
ti

o
n

s

Classical Quantum

I First order harmonic gauge.

I Negligible contribution of ref. matter.

δφ
′′ − V̄ 4/3∇2

δφ = 0 .

I Wavefunction peaked on πφ = π̃φ.

I Domination of single spin υo : δV ≡ 2ρ̄υo δρυo .

δφ = δV/V̄ + N̄[∂πφθυo ]πφ=π̃φ
.

I Matching at super-horizon scales I No matching for intermediate scales.

LM, Oriti 2112.12677; Gerhart, Oriti, Wilson-Ewing 1805.03099;

Luca Marchetti Relational cosmological inhomogeneities from QG condensates


	Conclusions
	Appendix
	Backup


